Difference between revisions of "Documentation/Nightly/Modules/PkModeling"

From Slicer Wiki
Jump to: navigation, search
(Prepend documentation/versioncheck template. See http://na-mic.org/Mantis/view.php?id=2887)
Line 57: Line 57:
 
*** T1 Blood Value  
 
*** T1 Blood Value  
 
*** T1 Tissue Value (default value is the published value for prostate tissue estimated in healthy individuals (see Ref. de Bazelaire et al.)
 
*** T1 Tissue Value (default value is the published value for prostate tissue estimated in healthy individuals (see Ref. de Bazelaire et al.)
*** Relaxivity Value (contrast agent specific, default value corresponds to Gd DPTA)
+
*** r1 Relaxivity Value of the contrast agent, L x mol^(-1) x s^(-1). This value is contrast agent specific. Default setting of 0.0039 corresponds to Gd-DPTA (Magnevist) at 3T, see Ref. Pintaske et al. You will need to adjust this setting based on the magnet signal strength and contrast agent.
 
*** Hematocrit Value. Volume percentage of red blood cells in blood.
 
*** Hematocrit Value. Volume percentage of red blood cells in blood.
 
*** AUC Time Interval Value: Time interval for AUC calculation
 
*** AUC Time Interval Value: Time interval for AUC calculation
Line 78: Line 78:
 
* [2] Rijpkema M, Kaanders JHAM, Joosten FBM et al: Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J Magn Reson Imaging 2001; 14:457-463.
 
* [2] Rijpkema M, Kaanders JHAM, Joosten FBM et al: Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J Magn Reson Imaging 2001; 14:457-463.
 
* [3] de Bazelaire, C.M., et al., MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology, 2004. 230(3): p. 652-9.
 
* [3] de Bazelaire, C.M., et al., MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology, 2004. 230(3): p. 652-9.
 
+
* [4] Pintaske J, Martirosian P, Graf H, Erb G, Lodemann K-P, Claussen CD, Schick F. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Investigative radiology. 2006 March;41(3):213–21.
 
<!-- ---------------------------- -->
 
<!-- ---------------------------- -->
 
{{documentation/{{documentation/version}}/module-section|Information for Developers}}
 
{{documentation/{{documentation/version}}/module-section|Information for Developers}}

Revision as of 22:54, 12 July 2013

Home < Documentation < Nightly < Modules < PkModeling


For the latest Slicer documentation, visit the read-the-docs.


Introduction and Acknowledgements

Extension: PkModeling
Acknowledgments: This work is part of the National Alliance for Medical Image Computing (NA-MIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research.
Implementation of the pharmacokinetics modeling was contributed by Yingxuan Zhu and Jim Miller from GE Research.
Author: Yingxuan Zhu, Jim Miller (GE)
Contact: Yingxuan Zhu, <email>zhuyi@ge.com</email>

GE Global Research  
National Alliance for Medical Image Computing (NA-MIC)  

Module Description

PkModeling (Pharmacokinetics Modeling) calculates quantitative parameters from Dynamic Contrast Enhanced DCE-MRI images. This module performs two operations:

  1. Converts signal intensities to concentration values. The concentration values are used to calculate quantitative parameters.
  2. Calculates quantitative parameters from concentration values. These parameters include:
Ktrans
Volume transfer constant between blood plasma and EES (extracellular-extravascular space) at each voxel
Ve
Fractional volume for extracellular space at each voxel
MaxSlope
Maximum slope in the time series curve of each voxel
AUC
Area under the curve of each voxel, measured from bolus arrival time to the end time of interval, normalized by the AUC of the AIF

Use Cases

Tutorials

Panels and their use

PkModeling
  • IO
    • Input: 4D DCE-MRI data; 3D mask showing the location of the arterial input function.
    • Output: 4 volumes showing the maps of quantitative parameters: ktrans, ve, maximum slope, and area under the curve (AUC).
  • Parameters
    • PkModeling:
      • T1 Blood Value
      • T1 Tissue Value (default value is the published value for prostate tissue estimated in healthy individuals (see Ref. de Bazelaire et al.)
      • r1 Relaxivity Value of the contrast agent, L x mol^(-1) x s^(-1). This value is contrast agent specific. Default setting of 0.0039 corresponds to Gd-DPTA (Magnevist) at 3T, see Ref. Pintaske et al. You will need to adjust this setting based on the magnet signal strength and contrast agent.
      • Hematocrit Value. Volume percentage of red blood cells in blood.
      • AUC Time Interval Value: Time interval for AUC calculation
    • Acquisition:
      • TR Value: Repetition time,
      • TE Value: Echo time,
      • FA Value: Flip angle,
      • Time Axis: Time series.

Similar Modules

References

  • [1] Knopp MV, Giesel FL, Marcos H et al: Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top Magn Reson Imaging, 2001; 12:301-308.
  • [2] Rijpkema M, Kaanders JHAM, Joosten FBM et al: Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J Magn Reson Imaging 2001; 14:457-463.
  • [3] de Bazelaire, C.M., et al., MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology, 2004. 230(3): p. 652-9.
  • [4] Pintaske J, Martirosian P, Graf H, Erb G, Lodemann K-P, Claussen CD, Schick F. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Investigative radiology. 2006 March;41(3):213–21.

Information for Developers