Supervisors:
Ron Kikinis, M.D.
Steve Pieper, Ph.D.

Surgical Planning Laboratory
Brigham and Women's Hospital
Harvard Medical School
Boston, MA, USA

Integration of

the Vascular Modeling Toolkit

in 3D Slicer

Student Research Project

Daniel Hihn

Student of Medical Informatics
University of Heidelberg

04/20/09

Luca Antiga, Ph.D.

Medical Imaging Unit
Bioengineering Department
Mario Negri Institute
Ranica (BG), Italy

Responsible Professor:
Prof. Dr. Hartmut Dickhaus

Institute for Medical Biometry and Informatics
Department of Medical Informatics

University of Heidelberg

Germany

Abstract

The extraction of vessels in two- and three-dimensional images is part of many clinical analysis tasks.
Surgical and radiology procedures often involve the visualization and quantification of vessels in order
to perform surgical planning or diagnostics. There is no single segmentation method that can extract
vessels from every medical image modality, but different approaches and robust algorithms exist.
Various published key algorithms are available within an open-source framework for image-based
modeling of blood vessels, referred to as the Vascular Modeling Toolkit (VMTK).

The library of VMTK was made available in 3D Slicer, an application providing a wide range of tools
for medical image processing. This was realized using a hidden loadable module approach in order to
provide a flexible way of distributing and including the library. To evaluate and verify the integration, a
software module offering VMTK level set segmentation methods within 3D Slicer was created.

With the successful connection of the two above mentioned software solutions, processing pipelines
between VMTK code and other algorithms can be established. Several techniques for three dimensional
reconstruction, geometric analysis, mesh generation and surface data analysis for image-based modeling
of blood vessels are now accessible to the 3D Slicer developer. The reference implementation for
accessing VMTK, as well as the created library module are available as open-source software.

The research presented in this paper was made possible by a charitable grant of the Thomas-Gessmann
Foundation part of the Founder Federation for German Science.

Table of Contents

I INEEOAUCTION. ...ttt ettt et e sa bttt e s bt et e sabe e bt e s bt e et e e sbaeesnnbaeeenanee 4
2 FUNAMENTALS. ..ottt ettt ettt e ettt e et e e et e e e bt e e e bt e e s bbb e e e e e e e aetteeeeeean 5
PYRON. ...ttt ettt s e e sttt e st e e tee e e e e e 5
VITKITK ettt ettt et e s e et e e st et sat e e bt e e eabe e e e s bbeeesanneee 5
CIMEAKE..... ettt ettt ettt st e b e s at e et e ettt e h e et ea e b e e ate et enaae e beenane s 5
VIMITK ettt et e h ettt e s bt e e ab e e bt e et e e bt e e abb e e e eabbeeeenbeeeeanbbeeas 6

W WIA@ELS. ..ttt ettt et e h e et e s at e et e e sa b e e bt e s ab e e bt e e s nbbeeeenbbeeeenabbeeas 6

B STECET ..ttt ettt ettt et et et e a e et saa e et e e et e et e e s s 6

3 MELNOAOIOZIES.eeneiieniieiieeteee ettt ettt ettt e et e e e bt e et e st s abeesbeeeaneenneenanaeees 8
3.1 Integrating the VIMTK BaSe........cccoiiiiiiiiiiiiieiieeeiie ettt ettt tte e aee e s aee e s eae e s ennnenees 8
ManUAl INt@ETALION.ccitiieiiieeeiie ettt ettt e et e e st e e bt e et e e etaeeenaaeesasbaaaeeeeannssneeeesesnnnssees 8
GUI-less Module based INTEZIatioN.cccueivueeriiieiiiiriieiienieeieeee et 9
USING VMTEK 10 3D SHCET....eiiiiiiiiiiiiciieeteee ettt ettt 11

3.2 Level Set Segmentation in 3D Slicer using VMTKc.ccooiiiiiiiiiiiiieeeeeeecee e, 12
Level Set SeZMENTAtION.eiiiiiieiiiieeiieeeiieeeiteertee et ee et e et e sttt e st e e sbeeesnbteeeesnaabaaeeeesesnssseaeeens 12

An Example Level Set Segmentation using VMTK ..o 13

Level Set Segmentation WOrk flOW........ccc.eoiiiiiiiiiiiii e 13

Design of the created Level Set Segmentation Module............coccueiriiiiniiiiniiiiniieeiieeee e 15
C1aSS DESIEN.c...tieiiiieeiie ettt ettt e e e e sttt e st e e s bt eesab e e ettt e s bt e e sbbeesbeeesbteeebaeeeenn 15
Graphical User INITaCE.coeiiiiiiiieeiie ettt e e et e e e e e e nneaaeeeeeens 17
Implementation of the created Level Set Segmentation Module.............ccccovverviieeniieeniieeeiiee e 20
Calling Level Set Segmentation Methods of VMTK........ccccooiiiiiiiiiiiieeeceeeen 21
Initialization METROAS.cccuviiiiiiiiie ettt e e e e e e 21

EVOIUtion MEthOMS. ...c..eiiiiiiiiiiiiii ettt st 22

Changes to the 3D Slicer Base and KWWidgets.........coovuiieriieiiiieiiiieeiieeciee e 23

4 RESULES. ..ottt ettt et e bt e bt e et e e e bt e e et e e e bt e e e bt e e e bttt eeeeeeaaa 24
S Discussion and OULIOOK.eeiiiiiiiiiii ettt e e e e 26
6 BIDIIOZIAPNYceiuiiiiiiiie ettt ettt ettt e et e ettt e e ab e e e ab e e e at e e s ateeebbeesbeeeeeanna 27

2N o) 011 16 L OO UPP PRSP 30

1 Introduction

Surgical and radiology procedures may involve the visualization and quantification of vessels as clinical
analysis tasks. In order to perform surgical planning or diagnostics, vessels in two- or three-dimensional
images are often extracted. This task is called vessel or vascular segmentation. [Aylward2002]

Since there is no single segmentation method that can extract vessels or other tubular shaped objects
from every medical image modality, a variety of different vessel extraction techniques and algorithms
exist [Kirbas2004]. These algorithms follow different approaches which Kirbas and Quek (2004) used
to divide into six main categories: (1) pattern recognition techniques, (2) model-based approaches, (3)
tracking-based approaches, (4) artificial intelligence-based approaches, (5) neural network-based
approaches, and (6) tube-like object detection approaches. One goal of this student research project was
to find and choose a suitable method to integrate within 3D Slicer (Version 3)', an application which
provides a wide range of tools and utilities concerning medical image processing. This application was
chosen because it is widely accepted, open-source and a platform independent software solution.

During the analysis of the state-of-the-art methods for vessel and tubular shaped objects segmentation,
the Vascular Modeling Toolkit (VMTK)> was discovered. VMTK is an open-source framework
providing tools for image-based modeling of blood vessels.

Since VMTK offers various segmentation methods, the integration with 3D Slicer appeared to be more
promising than just integrating one specific segmentation method. 3D Slicer is a “point-and-click” end
user application, therefore the usability enhancement using 3D Slicer modules rather than the console-
based VMTK should be an additional option presented in this student research project.

In addition to the back-end encapsulation of the complete VMTK framework, another goal of this
project was to create an interactive software module. This module provides specific VMTK
functionality in 3D Slicer as a reference implementation to evaluate and verify the integration. The task
of vessel segmentation based on level sets was chosen for this purpose. Level set segmentation is a
deformable model-based approach where the surface of the segmented object is described by a three-
dimensional function [Kirbas2004].

In comparison to previous work on vessel segmentation in 3D Slicer, this student research project
differs because it utilizes the powerful VMTK framework as a back-end and the strong end user
application 3D Slicer as a front-end. The challenges of connecting these two complex software
solutions are described in this paper, as well as the level set segmentation module itself.

The information presented in this project report will be structured as follows. Chapter two describes the
software and frameworks used. Chapter three focuses on the methodologies of this work and is split
into two parts. The first part describes and shows the realization of the integration of VMTK within 3D
Slicer. The second part discusses the design and implementation of the level set segmentation module.
Throughout the development of this module, feedback was provided from the developers of VMTK. It
is followed by chapter four which illustrates the major results. The Discussion and Outlook chapter
deals with the available opportunities of the VMTK integration and also with possible further
enhancements of the created level set segmentation module.

1 3D Slicer is available at http://www.slicer.org
2 The Vascular Modeling Toolkit is available at http://www.vmtk.org

http://www.slicer.org/
http://www.vmtk.org/

2 Fundamentals

The following software and frameworks were used during this student research project.

Python
Python is a widely used dynamic programming language [Pilgrim2009].

The software and frameworks used in this student research project take advantage of the possibility
that Python is embeddable within applications as a scripting interface.

VTKITK

The Visualization Toolkit (VTK) is “an open-source, freely available software system for 3D computer
graphics, image processing, and visualization used by thousands of researchers and developers around
the world. VTK consists of a C++ class library and several interpreted interface layers including Tcl/Tk,
Java, and Python. [...] VTK supports a wide variety of visualization algorithms including scalar, vector,
tensor, texture, and volumetric methods; and advanced modeling techniques such as implicit modeling,
polygon reduction, mesh smoothing, cutting, contouring, and Delaunay triangulation.” [VTK2009]

The Insight Segmentation and Registration Toolkit (ITK) is “an open-source, cross-platform system
that provides developers with an extensive suite of software tools for image analysis. [...] ITK employs
leading-edge algorithms for registering and segmenting multidimensional data.” [ITK2009]

While ITK is a framework for image processing and does not provide visualization methods, the
visualization component is often realized using OpenGL’ or VTK [ITKVTK2009]. The applications
used in this student research project heavily rely on the combination of ITK and VTK.

ITK and VTK are part of “the NA-MIC kit”* and are available as platform independent software
packages’.

CMake

CMake is a build-system which uses compiler and operating system independent configuration files.
Those configuration files are named CMakeLists.txt and are defined using its own language, the
CMake configuration language. The actual build process is still performed by native build tools but the
advantage of CMake is that the configuration of these tools is much easier. [Cmake2009]

CMake is also part of “the NA-MIC kit” and available as a platform independent software package®.
VMTXK, as well as 3D Slicer, use CMake as the build system which is important in their connection.

3 OpenGL (for “Open Graphics Library”) is a standard software interface to graphics hardware and is widely used.
[OpenGL2009]

4 The NA-MIC kit is a free open-source platform and consists of several tools and frameworks for visualization, rendering

and image manipulation but also for the support of software development in general. The kit is provided by the National

Alliance of Medical Imaging Computing (NA-MIC). [NAMICkit2009]

VTK and ITK are available at http://www.vtk.org and http://www.itk.org

6 CMake is available at http://www.cmake.org

|9}

http://www.cmake.org/
http://www.itk.org/
http://www.vtk.org/

VMTK

The Vascular Modeling Toolkit (VMTK) is “an open-source framework for image segmentation,
geometric characterization, mesh generation and computational hemodynamics specifically developed
for the analysis of vascular structures” [Piccinelli2009].

VMTK provides a collection of libraries and tools for image-based modeling of blood vessels.

This includes several scripts which provide high-level functionality and are available as Python classes.
These scripts are able to interact with each other using the integrated PypeS (Python pipe-able scripts)
framework. The actual algorithms implemented in C++ classes are based on VTK and ITK code and
have been published in medical imaging journals. [VMTK2009]

A list of the features available in VMTK can be found in Appendix A.

VMTK is actively developed and maintained by two researchers’. The toolkit is available as an open-
source and platform independent package®.

KWWidgets

KWWidgets is an open-source library of GUI’ widgets. The provided widgets are low-level core
widgets (like buttons, entries, scales and lists), composite widgets (like toolbars, gauges, histograms,
windows and dialogs) and high-level visualization-oriented widgets (like surface material editors,
simple animation generators and window/level preset editors) which interface to VTK. Beside
providing an object-orientated C++ layer on top of the Tcl/Tk UI toolkit', KWWidgets are wrapped
automatically into a Tcl" package or a Python module and therefore can be directly used from Tcl or
Python. [Kwwidgets2009]

This library is also part of “the NA-MIC kit” and is available within a source code repository".

3D Slicer

3D Slicer is “a free, open-source software package for visualization and image analysis. 3D Slicer is
natively designed to be available on multiple platforms” [Slicer2009]. The application was originally
developed by the Surgical Planning Laboratory (SPL) at the Brigham and Women's Hospital and the
MIT Artificial Intelligence Laboratory in 1998.

Several past and present projects prove that 3D Slicer is an actively developed platform involved in
daily medical imaging research worldwide."

Based on a Model View Controller pattern (see Appendix B) and the Medical Reality Modeling

7 Developers of VMTK are: Luca Antiga (Medical Imaging Unit, Bioengineering Department, Mario Negri Institute,
Bergamo, Italy) and David Steinman (Biomedical Simulation Lab, Mechanical & Industrial Engineering, University of
Toronto, Ontario, Canada)

8 Release packages as well as the current development version of VMTK are available at
http://www.vmtk.org/Main/Download

9 GUI: graphical user interface

10 The Tk UI toolkit is “the standard GUI for Tcl and other dynamic languages” [Tc12009].

11 Tcl (Tool Command Language) is a popular dynamic programming language and available as open-source software.
[Tc12009]

12 The KWWidgets toolkit is available at http://www.kwwidgets.org

13 An overview of 3D Slicer Enabled Research is available at http://slicer.org/pages/Slicer Community

http://slicer.org/pages/Slicer_Community
http://www.kwwidgets.org/
http://www.vmtk.org/Main/Download

Language (MRML)", the functionality of 3D Slicer can be extended using modules.
3D Slicer is also part of “the NA-MIC kit” and is available as a platform independent software package.

14 MRML is a XML based data format to describe 3D scenes including several different types of medical imaging data and
their visualization. [Mrml2009]

3 Methodologies

The methodologies of this student research project are outlined in this chapter. First the integration of
the Vascular Modeling Toolkit base is described, then the usage of VMTK in 3D Slicer is shown,
followed by a characterization of the level set segmentation module as a reference implementation of
VMTK in 3D Slicer.

3.1 Integrating the VMTK Base

When the Vascular Modeling Toolkit is downloaded the package shown in Illustration 3.1 is obtained.
The algorithms of VMTK are C++ classes inside the folder vtkVmtk/ and are referred to as the Vascular
Modeling Toolkit libraries.

S vmtk To provide the desired functionality of the Vascular Modeling Toolkit,
[CMakelnput the VMTK libraries must be integrated into 3D Slicer.
B2 Pypes
LR et Manual Integration
-7 Common

In the early research stage, this integration was done in a user

B ComputationalGeometry unfriendly way. Manual changes of the main method in Slicer3.cxx had

-[£] DifferentialGeometry

B30 to be performed after copying the vtkVmtk/ folder into the 3D Slicer
B Misc library directory Slicer3/Libs (see Code 1). These lines connect the
-1 Segmentation VMTK libraries with 3D Slicer by calling the automatically
=[] Utilities generated"” Tcl initialization classes.

= [E7] Wrapping
Tlastration 3.1~ Self created ilhasiration o the Axdditionally, the CMakeLists.txt file in the 3D Slicer library directory

VMTK package structure had to be modified to include the copied VMTK libraries during
compilation of 3D Slicer.

,n'lr,n'lr ['--]

extern "C" int Vtkvmtkcommontcl Init(Tcl Interp *interp);

extern "C" int Vtkvmtkcomputationalgeometrytcl Init(Tcl Interp *interp);
extern "C" int Vtkvmtkdifferentialgeometrytcl Init(Tcl Interp *interp);
extern "C" int vtkvmtkiotcl_Init(Tcl_Interp *interp);

extern "C" int Vtkvmtkmisctcl_Init(Tcl_Interp *interp);

extern "C" int Vtkvmtksegmentationtcl Init(Tcl_Interp *interp);

,n'lr,n'lr ['--]

vtkvmtkcommontcl Init(interp);
vtkvmtkcomputationalgeometrytel Init(interp);
vtkvmtkdifferentialgeometrytcl Initlinterp);
vtkvmtkiotcl_Initi{interp);

vtkvmtkmisctcl Initi{interp);
vtkvmtksegmentationtcl Init(interp);

,l'lr,l'lr [..]
Code 1: TCL Initialization of the VMTK library, added manually to Slicer3.cxx

The VMTK libraries consist of several sub-directories holding packages of algorithms. Since VMTK

15 The wrapped Tcl classes get automatically generated by CMake.

-9.

uses CMake as a build system, each sub-folder includes its own CMake configuration file. When
compiling 3D Slicer, these CMakeLists.txt files get parsed recursively and include the complete folder
tree of the VMTK libraries to the build.

Nevertheless, this kind of integration was neither user friendly nor acceptable, therefore a different way
had to be found.

GUI-less Module based Integration

To omit the required manual changes of the 3D Slicer base, it was decided to add extra functionality to
the 3D Slicer infrastructure enabling GUI-less loadable modules'®. In comparison to the existing
loadable module interface, which requires a GUI-class and integrates itself into the 3D Slicer menu, the
GUI-less loadable modules should be hidden within the 3D Slicer application. The necessary changes
to implement the infrastructure for GUI-less loadable modules were realized [Slicer_SVN, rev. 8770]".
Using this provided infrastructure, it was possible to create a GUI-less loadable module for VMTK in
3D Slicer named VmtkSlicerModule, which consists of the following structure:

vtkVmtk/
The directory which holds all VMTK libraries.

CMakelLists.txt
The CMake build file, which also includes the VMTK library directory for compilation.

VmtkSlicerModule.xml|
The required XML description of the module.

vtkVmtkSlicerModulel ogic.cxx
The required logic class of the module to initialize using the TCL mapping which were included manually in Slicer3.cxx before (see Code 3).

vtkVmtkSlicerModulel ogic.h
The header file of the logic class to describe the implemented methods.
Other required files exist but can be considered as stubs because no real content was added.

The CMakeLists.txt file of the GUI-less loadable module includes the sub-directory holding the VMTK
libraries (see Code 2).

[...]

subdirs(
vtk vmtk

)
[...]

set(libs ${libs} wtkvmtkCommonTCL vtkvmtkComputationalGeometryTCL
vtkvmtkDifferentialGeometryTCL vikvmtkIOTCL vtkvmtkMiscTCL vtkvmtkSegmentationTCL)

target_link_libraries(${1lib_name}
${slicer3 Libs_LIBRARIES}
${Slicer3_Base_L IBRARIES}H
${KwWidgets_ LIBRARIES}
${ITK_LIBRARIES}
${1libs}
)

[...]
Code 2: Extracts of the CMakelLists.txt file of VmtkSlicerModule

16 A loadable module can be dynamically loaded during the 3D Slicer startup process. The user has the option to select
which modules are used in 3D Slicer.

17 Acknowledgment: Support for GUI-less loadable modules was integrated into 3D Slicer by Terry G. Lorber II and Steve
Pieper, Isomics, Inc., Cambridge, MA, USA

- 10 -

fod

#1nclude "vtkSlicerapplication.h"
#include "wtkTel.h" /¢ Needed for Tel_Interp

extern "C" int Vtkvmtkcommontcl_Init(Tcl_Interp *interp);

extern "C" int vtkvmtkcomputationalgeometrytcl_Init(Tcl_Interp *interp);
extern "C" int vtkvmtkdifferentialgeometrytcl Init(Tcl_Interp *interp);
extern "C" int vtkvmtkiotcl Init(Tcl Interp *interp);

extern "C" int Vtkvmtkmisctcl Init(Tcl Interp *interp);

extern "C" int Vtkvmtksegmentationtcl Init(Tcl Interp *interp);

s

vtkvmtkSlicerModuleLogic: :vtkvmtkSlicerModulelogic()
{

Tecl _Interp *interp = NULL;

vtkslicerapplication *slicerfpp = vtkSlicerApplication::GetInstance ();
interp = slicerApp-=GetMainInterp();

if (tinterp)

cout == "Error: InitializeTcl failed" == endl;

1

Vtkvmtkcommontcl_Init(interp);
vtkvmtkcomputationalgeometrytcl_Init(interp);
vtkvmtkdifferentialgeometrytcl Init(interp);
Vtkvmtkiotcl Init(interp);

Vtkvmtkmisctcl Init(interp);
Vtkvmtksegmentationtcl Init(interp);

i

gL
Code 3: TCL Initialization of the VMTK library, added to vikVmtkSlicerModuleLogic.cxx

An error concerning a specific path of the VMTK libraries was fixed by adding the following line to
CMakelLists.txt [Slicervmtklvist_SVN, rev. 34]:

set(TETGEN_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/vtkVmtk/Utilities/tetgen1.4.2)

Nevertheless, this error only appeared on some testing machines and was not reproducible.

The module depends on the VMTK libraries which are actively developed and get extended constantly.
To solve the problem of the backwardness of these libraries, a solution was found using SVN property
settings. The library folder is integrated using a svn:external’ repository to enable fetching of the latest
VMTK version during a checkout of VmtkSlicerModule.

After a SVN checkout, the module can be installed in the same way as other 3D Slicer loadable
modules by copying it to Slicer3/Modules/ and adding it to the build process.

Additionally, a 3D Slicer Extension Build System" file (.s3ext-file) was created to describe this GUI-

less loadable module and provide end users a comfortable way of installing the latest version of the
VMTK library within 3D Slicer in the future.

18 svn:external is a SVN property which enables the connection of different SVN repositories (http://svnbook.red-
bean.com/en/1.0/ch07s03.html).

19 The 3D Slicer Extension Build System works as a dynamic repository to allow end users to easily download and install
modules, but is still in development.

http://svnbook.red-bean.com/en/1.0/ch07s03.html
http://svnbook.red-bean.com/en/1.0/ch07s03.html
http://svnbook.red-bean.com/en/1.0/ch07s03.html

Using VMTK in 3D Slicer
By installing the GUI-less module VmtkSlicerModule all objects and functions of the Vascular

Modeling Toolkit libraries are available within 3D Slicer.

-11 -

[ustration 3.2 shows how to access the Fast Marching [Sethian1999] implementation of VMTK using
the 3D Slicer Python console.

Python Console v1.4

Python Console vl.4 by Ka-Ping Yee <ping@lfw. org>

»»» from Slicer import slicer

»»» fastMarchingFilter = slicer wtkvmtkFastMarchingUpwindGradientImageFilter ()
»»» help(fastMarchingFilter)

Help on whkemtkFastiarchingUpwindSradientImageFilter in module 5licer ohject:

class vikemtkFastMarchingUpwindGradientInageFilter (wthITKInageToInageFilterFE)

Method resolution order:
vtlksmtkFastMarchingUpwrindSradientInageFilter
vthITEInageToInageFilterFF
vthITEInageToInageFilter
wtkInageToInageF1lter
wvtkImageSource
wtkSource
vtkProcessihject
wtkalgorithm
wvthkibject
wtkibjectEaze
_ builtin_ . ohjeckt

Methods defined here:

BenerateBradientInage0ff (self, *a)

GeneratetradientInagedn(self, *a)

GetllassName (self, *a)

GetGenerateGradientInage (self, *a)

GetSeeds(3elf, *a)

GetSuperilassName (self, +a)

GetTargetOffset (self, *a)

GetTargetReachediode (self, *a)

GetTargetValue (self, *a)

GetTargets(self, +*a)

GetTelName = _ getToclName (self)

Ish(self, *a)

NewInstance (self, *a)

SafelownCast(self, *a)

SetGenerateCradientInage (self, *a)

SetSeeds(zelf, #*a)

@i

Hllustration 3.2: Accessing VMTK using the 3D Slicer Python console

The same filter can be created using the Tcl
console as seen in Illustration 3.3.

Beside using the consoles for quick access
to the VMTK libraries, all available
functions can be called by any 3D Slicer
modules.

A reference implementation of a module
mapping the level set segmentation process
of VMTK to 3D Slicer is presented in the
next section.

File Edit Interp Prefs History

|oading history file ... 0 events added

fasihlarchingFilter
(hype) 3%

3D Slicer Version 3.3 Alpha : Tcl Interactor

hain console display active (TclB.4.13 F TkB.4.19)
(hype) 1% vikvmtkFastviarchingUpwindGradientimageFilier fasthvarchingFilter

(hype) 2 % fasitarchingFilter SetTargetOffset 100

Hllustration 3.3: Accessing VMTK using the 3D Slicer Tcl console

“12-

3.2 Level Set Segmentation in 3D Slicer using VMTK

The following section deals with the creation of an interactive software module for performing the task
of level set segmentation of VMTK in 3D Slicer.

A brief overview in general is given and an example of level set segmentation using VMTK 1is shown.
After the analysis of this method, a module for 3D Slicer mapping this process is presented.

Level Set Segmentation

Level set segmentation is a geometric deformable model approach which is based on the use of the
Level Set Method developed by Osher and Sethian in 1988. [Kirbas2004]

For further investigating the involved mathematical background
of the mentioned Level Set Method, see the detailed description
in “Level Set Methods and Fast Marching Methods” by J.A.
Sethian.

Segmentation using level sets consists of an initialization and an
evolution step. The initialization step involves the description of
a starting model within a region of interest. In the evolution step
this initial deformable model then gets inflated to match the
contours of the targeted volume. A good initialization is an
important progress towards the segmentation of a vascular
branch. [Vmtktut2009]

[lustration 3.4 shows the initialization and evolution principles.

After 275 iterations After 391 iterations

Hllustration 3.4: Initialization and Evolution
steps [Kirbas2004, Figure 8]

S13 -

An Example Level Set Segmentation using VMTK

When using VMTK for level set segmentation, the console based Python script
vmtklevelsetsegmentation must be started. In addition to the required input and output volumes, other
optional parameters may be passed as command line arguments. A rendering window showing the input
volume is opened. The required interaction takes place in either the rendering window or the console.

An example of the level set segmentation process is displayed in Illustration 3.5. The actual state
captured shows a performed evolution after an initialization on a single vascular branch as a translucent
model inside the rendering window.

“Visualization Toolkit - Openai

"hype@TIGER: ~/VMTK_TUT

rminal

Hllustration 3.5: Example level set segmentation using VMTK

The user interaction was performed by keyboard in the console as well as in the rendering window, and
by using the mouse in the rendering window for placing seed points.

Level Set Segmentation Work flow

In the level set segmentation process of VMTK the user first initializes using a chosen method. After
initialization, the segmented volume is generated and displayed as a 3D model. Then the user decides
whether to directly accept the results and continue to evolution stage, add another branch or undo the
last action. If the initialization is accepted, then the user chooses an evolution method and applies. The
result is an inflated volume which is displayed as a 3D model. This is followed by the final options

_14-

which are accepting this evolution, undoing it, or adding another branch by re-initializaing. The process
is shown as a flow chart in Illustration 3.6.

Start

}

» Inttialzation _"
Merge,
if added
hiranch
Add Volume o |
Undo, ano}her
H branch
res}nre
revious volume
P Display Model

Or.add

ano.ther

branch

Add another Mo Accept i
orundo ¥ —_inttialzation? ~—— Y©S '|—P Evolution
Mo, l
undo
Yolume
Accept .
End .+ VeSS — evolution? p———— Display Model

Hlustration 3.6: Self created flow chart showing the level set segmentation process (simplified)

-15 -

Design of the created Level Set Segmentation Module

The following section describes the design and the work flow of the created level set segmentation
module which can be seen as a reference implementation of VMTK functionality in 3D Slicer.

When using VMTK for level set segmentation, special user interaction like placing seed points is
involved. To realize this functionality within 3D Slicer, a Scripted Module approach based on Python
was chosen. Scripted Modules written in scripting languages like Python or Tcl are able to provide the
same functionality as loadable modules. This grants access to 3D Slicer internals, as well as the
interactions which are needed to implement the level set segmentation [Antiga2009, pp. 25-27].

Class Design

Since the level set segmentation was realized as a 3D Slicer Scripted Module, it follows the conventions
of the Model View Controller pattern of slicer modules (see Appendix B). This implies the separation of
logic and GUI. Beside the advantage that the code is more readable, the isolation of the logic offers an
ability to change the invoking GUI (e.g. to a wizard based interface) or write tests for the logic.

Slicer VMTELevelSetGUIHelper
+ init) ScriptedModuleGUl
+ SetlsinteractiveModel)
+ GetlsirteractiveModel)
+ debug() ﬁ' }
+ Registerinteractors()
+ HandleClicknRenderwindawl)
+ HandleCI!ckInRedSIiCEWinc!owl::l | # _helper
+ HandleClickiny allows liceWindawi)
+ HandleClickinGreensliceWindaowi)
+ HandleClicking liceWindowl) .
+ ConvertCoordinates2RAS() Slicer VMTKLevelSetGUI
+ ConvertCoordinates2K() T
+ ConvertRAS2IKi) —nt_4
+ SetAndMergelnitvolumel) + Bestrugtort]
R + RemoveMRMLModeO bserversi)
1 ; +R LegicOb 0
= 2 + SetAndMergeEvolvolumel) E?DVE bn:\glc 5er:vers__
Slicer VMTKLevelSetContainer 0 + AddGUIObserversi)
+ UndoE voll)
i talnitislizationModel(l + ProcessClickOninitTabs()
node susen | GenerateEn 'TL::'. 'i‘n .:IDII'T L + ProcessClickOnEwvell absi)
threshold T + RemoveGUI0bservers()
E + ProcessGUIEvents()
s i + UpdateMRMLI)
ki) , # _logic e ' o
+ GetMadel) + UpdateGUIi))
+ GetThresholdi) s g + ProcessMRMLE vents()
+ SetNodel) _— SlicerVMTKLevelSetLogic + BuildgUI())
+ SetThresholdi) ST IF ot + TearDownGUI()
e lich - + GetHelper()
 Eusohas o okl + GettyLogicl)
T Exerurel ast ar-:rlngf.l + UnLockintinterfacel)
+ ExecuteThresheld() + UnLockEvollnterfacel)
b Execiegc‘szrﬁce” + SetUpdatingoni)
xecutes eeads . "
z i ' + SetUpdatingO i
+ BuildGradientB asedF eaturelmagel) pEAtngU
S + ChangelnfolLabel()
+ Execute’eodesicl) + UpdateGUIByStatel)
+ ExecuteCurvesl) P ¥ '
+ MarchingCubes()

Hlustration 3.7: Self created class diagram showing the separation of GUI and logic

SlicerVMTKLevelSetGUI derives from ScriptedModuleGUI and saves the current user interface state to
its own MRML node. The MRML nodes of the used volume and model data® are additionally attached.
This allows different instances of the level set segmentation module to be run at the same time. To

20 The used MRML nodes are vtkMRMLScalarVolumeNode, vikMRMLModelNode and vtkMRMLModelDisplayNode.

- 16 -

ensure this functionality, certain methods that update the GUI and the MRML node have to be
implemented”. Additional methods must also exist to process events fired from the GUL

The actual calls to the VMTK libraries are only performed in SlicerVMTKLevelSetLogic and are
documented on page 21.

Several general supporting functions, like handling interaction within 3D Slicer, converting coordinates,
undoing and the merging of volumes are outsourced in the class SlicerVMTKLevelSetGUIHelper.

Not only does every initialization and evolution method of the level set segmentation module use its
own GUI and widgets but it also provides individual user interaction within 3D Slicer. Seperate classes
derived from the interface SlicerVMTKAdvancedPageSkeleton were created for each method in order to
ensure the possibility of maintenance and extension. The calls to the required methods mentioned above
get forwarded to each individual sub-class to support the modular design and enable code
encapsulation.

The following illustration shows the link between the initialization methods.

SlicerVMTKLevelSetGUI | & parertClass
w SlicervMTKAdvancedPageSkeleton

_parentFrame
_parentClass

Slicer VMTKInitializationSeedsGUI

<I # _seedFiducialList

_firstRowFrame

_seedPointsFrame

_addSeedP ointButton

_delSeedPointButton

_seedPointsList

_startButton

_resetButton

_addSeedP ointButtonTag
_delS eedP ointButtonT ag

+ _inmit_()

+ Destructor()
_D + BuildG L)
+ RemowveGUIObservers()

Slicer VMTKInitializationWelcomeGUI

_welcomeMessage

+ AddGUIObservers()

+ ProcessGUIEvents()

+ UpdateMRML()

+ UpdateGUI()

+ DeleteFiducialListsF romScenal)

+ HandleClickins liceWindowwithC oordinates()

+ Execute()
+ Reseti)

Slicer VMTKInitializationlsosurfaceGUI

_firstRowFrame

_isosurfacelevelFrame

_isosurfaceleveThumbiWheel

_startButton

_resetButton

_isosurfaceLeveThumbWheelTag
_startButtonTag

_resetButtonTag

_startButtonTag
_resetButtonTag

Slicer VMTKInitializationCollidingFrontsGUI

_firstRowFrame

Slicer VMTKInitializationThresholdGUl

_firstRowFrame

_secondRowFrame
_thresholdFrame

_thresholdSlider

_startButton

_resetButton

_thresholdSliderTag
_startButtonTag

_resetButtonTag

Only the attributes of the inherited
classes are displayed. Each inherited
class calls methods from

SlicervMTK LevelSetGUIH elper

and

SlicervMTK LevelSaetLagic

via the _parentClass attribute.

Slicer VMTKInitializationFastMarchingGUI

_sourceFiducialList

_targetFiduciallist

_currentFiducialList

_firstRowFrame

_sourcePointsFrame

_addSourceP oirtButton

_delSourceP ointButton

_sourceP ointsList

_targetPointsFrame

_addTargetP ointButton

_delTargetP ointB utton

_targetPointsList

_secondRowFrame

_thresholdFrame

_thresholdSlider

_startButton

_resetButton

_addS ourceP ointButtonTag
_delSourcePaintButtonTag
_addTargetP oirtButtonTag
_delTargetP ointB uttonTag
_thresholdsliderTag

_startButtonTag

_resetButtonTag

_currentFiducialListLabel

_addS ourceP ointB utton

_addTargetP ointButton

_secondRowFrame

_thresholdFrame

_thresholdSlider

_startButton

_resetButton

_sourceFiducialList

_targetFiducialList

state

_addS ourceP ointB uttonTag
_addTargetP ointButtonTag
_thresholdSliderTag

_startButtonTag

_resetButtonTag

_currentFiducialList

_currentFiducialListL abel

Hlustration 3.8: Self created class diagram showing the individual classes of the initialization methods

A comparable diagram of classes used for the evolution methods can be found in Appendix C.

21 The required virtual methods must be implemented using overriding [Slicer2009c].

- 17 -

Graphical User Interface

The challenging part during the design of the graphical user interface was to exactly map the VMTK
level set segmentation work flow including required parameters and interaction styles to a 3D Slicer
module in a suitable way.

Within the top frame of the module two combo-boxes are visible. The first combo-box switches
between different instances of the level set segmentation module. This includes loading of connected
parameters and the actual state (equals the MRML node of the Scripted Module). The second combo-
box is used for selecting the input volume on which the segmentation is performed. After changing it
automatically gets displayed in the 3D Slicer slice viewers.

Additionally a status label is displayed to inform the user of current input possibilities or the actual state
of the module.

The bottom part of the GUI is generally divided by two frames — one for the initialization algorithms
and one for the evolution algorithms. Each frame consists of tabbed pages to select the individual
methods. For convenience, the first tabbed page shows an overview of the available techniques and
provides a short description. Since initialization and evolution methods can be performed several times,
action buttons to undo, add another branch or accept the current segmentation are included underneath
the frames. The following self created screen shots give a selective overview of the look and feel of the
module. Additional screen shots can be found in Appendix E.

E 3DSlicer

¥ Help & Acknowledgement

“ Level-Set Segmentation Parameters

Module Parameters: | v TP arameters

Input Volume: | HeadMRA

& Choose initialization method..
“* Initialization

Welcome | Colliding Fronts FastMarchingIIsosurface ThresholdlSeedsl

b

Level-Set Segmentation using VMIK (http.iwww.ymtk.org):

The following initialization methods exist:

Colliding Fromts: very effective when itis necessary to initialize the tract of a
vessel, side branches will be ignored.

Fast Marching effective when itis necessary to segment round objects such as
aneurysms. For example, by simply placing one seed at the center and one target on
the wall, the volume will be initialized.

Threshold pixels comprised within two specified thresholds will be selected as the
initial level sets. 7

¥ Ewolution

Hlustration 3.9: The level set segmentation module, ready to choose an
initialization method.

In addition to widgets for individual parameters, Start and Cancel buttons are always displayed in the
tabbed pages of initialization and evolution methods. These start the execution of the selected algorithm

- 18 -

if the required parameters or information are set, or reset the selected widgets to their default values.
The following illustrations show the GUI components of algorithms which get further described later in

this document (see page 21).

@ JDSlicer

¥ Help & Acknowledgement

“ Level-Set Segmentation Parameters

Module Parameters: | yMTKParameters

InputVelume: | HeadMRA =

& Choose initialization method.

“ Initialization

Welcome | Colliding Fronts | Fast Marching | Isasurface | Threshold| Seeds |

1. Add Source Point

Threshold Of Gray Values

ul Gray Walues of Vessels [1527

i i

L Y

Cancel
@
¥ Ewolution
@

Hlustration 3.10: The Colliding Fronts GUI, waiting for user
input.

@ 3DSlicer

¥ Help & Acknowledgement

“ Level-3et Segmentation Parameters

Module Parameters: | ypTKParameters

Inputviolume: | HeadMRA

& Choose initialization method..
“ Initialization

Welcomel Calliding Frontsl Fast Marching Isosurfac:elweshcl

Source Points Target Points
Add Source Point | Stop adding!

SP1-Fi6.3 Ad.0 5:0.0 TP -F:-19.0 A-26.9 5:0.0
SP2-R3.2A4-87 500 |1 =

| | =
= =

Threshold Of Gray Values

461 Gray Values of Vessels [1527

—| i
2 2

Cancel | Start! |

¥ Evolution

Hllustration 3.11: The Fast Marching GUI, ready to run.

[lustration 3.10 shows the graphical user interface
of the Colliding Fronts initialization method,
waiting for user input. Since the required parameters
(see page 21) are not configured yet, the execution
is disabled.

The Fast Marching GUI is shown in Illustration
3.11. Because source points, target points and a
threshold of gray values are already configured,
all needed parameters are set (see page 21) and
the algorithm is ready to execute.

Coordinates of the configured fiducial values
(source- and target points) are shown within the
lists.

The blue “Stop Adding!” button implies that the
interactive mode of selecting target points is still
activated. Thus, the module would also accept
another fiducial by clicking into the slice viewers
beside starting the execution.

- 19 -

E 3DSlicer

‘!ﬁi 3DSlicer ~ Help & Acknowledgement

* Level-Set Segmentation Parameters
~ Help & Acknowledgement Module Parameters: | i TKParameters

* Level-Zet Segmentation Parameters
Input Volume: | HesdnRa

Module Parameters: | v TKParameters
&) Choose evolution method

Input Volume: | HeadMRA : ¥ Initialization
& Choose initialization method.. i o
“* Initialization “ Ewolution
wWelcome | Colliding Fronts | Fast Marching | 1sosurface anesno\dl Seedsl Welcome | Geodesic| Curves
lsosurface Level Of Gray Values Number of iterations [300
Isosurface Leve | RIS TINI00N | 7 6 4 JRRRA T
Cancel Start! | Bcaling Weights

Propagation scaling: [0.0

Curvature scaling: |0.0

Advection scaling: [1.0
~ Evolution

Cancel Start! I

i

i

Hllustration 3.13: The Isosurface initialization GUI, ready to run.

Hllustration 3.12: Curves evolution method, ready to run.

[ustration 3.12 and 3.13 show the Isosurface initialization and the Curves evolution methods. Both are
ready to run because the required parameters (see page 21) are either already set by the user or are
default values.

The challenge of mapping the VMTK level set segmentation work flow to a graphical user interface
was already mentioned. To fulfill this purpose, action buttons were added after the initialization and the
evolution frames. These provide the ability to trigger segmenting another branch of vessels and undoing
or accepting the current segmentation result. The following figure shows the action buttons after one
initialization step was successfully performed.

B 3DSlicer

¥ Help & Acknowledgement

* Level-Set Begmentation Parameters

Module Parameters: | ypTKParameters

Input Volume: | HeadmMRA

& Initialization done. Add another branch?

~ Initialization
@ Add @ Undo @ Accept
T Evolution

Hlustration 3.14: Activated action buttons after a
successful initialization.

Beside the described components, the module also uses existent parts of the 3D Slicer GUI to provide
the segmentation functionality. For example, the seeding of fiducial values is performed in the slice
viewers and after each segmentation step, the generated three dimensional model is shown within the
rendering window (see Appendix D).

-20 -

Implementation of the created Level Set Segmentation Module

The created module, named VMTKLevelSetSegmentation, enables the segmentation of vascular
structures from MR or CT data sets and displays the results as a rendered model within 3D Slicer. As a
reference implementation it points out how to access VMTK from 3D Slicer.

The interactive placement of fiducial values (seed points) was realized using
vtkMRMLFiducialListNodes by observing the slice viewers. Their coordinates have to be converted
from the XYZ-system of the slice viewers to the RAS*-system and then to the IJK*-system to be used
within VMTK. Methods for performing these transformations using vtkMRMLScalarVolumeNode were
included into SlicerVMTKLevelSetGUIHelper.

After initialization and evolution steps, a generated model of the currently segmented volume is
displayed. In the early stages of development, the model generation was performed by the “Grayscale
Model Maker” module, which is part of 3D Slicer. To become more flexible and independent of the
model maker, model generation was soon realized using the Marching Cubes* implementation of VTK
in SlicerVMTKLevelSetLogic.

SetaAndMergevolume (newVolume) :
1T outputVolumeNode does not exist
create empty outputVolumeNode

create empty outputVolumeNodelast

copy current outputVolumeNode to outputVolumeModelast
set IJKToRASMatrix of outputVolumeNode to outputVolumeModelast

1f outputvolume 1s not empty
merge newVolume and content of outputVolumeNode using vtkImageMathematics
newVolume = mergedvolume

set content of outputVolumeNode to newVolume

return outputVolumeMode

Undo:

copy outputVolumeNodelLast to outputVolumeMode
set IJKToRASMatrix of outputVolumeNodelLast to outputVolumeMode

return outputVolumeMode

Code 4: Pseudo code showing the undo and merge mechanism of the SlicerVMTK LevelSetGUIHelper class

Each step of either initialization or evolution results in a new volume which then gets merged with the
last volume by using vtkImageMathematics. These steps can be repeated. During this sequence,
undoing the last performed step is important. Therefore the Level Set Segmentation module copies the
current output volume to a MRML node which can be restored if requested. Code 4 shows the undo and
merge mechanism, which is similar for initialization and evolution.

22 Right-Anterior-Superior system, describes coordinates in relation to the patient.
23 1JK are the labels of the grid like XYZ.
24 The Marching Cubes is a geometric rendering technique invented by Lorensen and Cline, patented 1985. [Uspto2009]

-21 -

Calling Level Set Segmentation Methods of VMTK

The Vascular Modeling Toolkit supports several algorithms for segmenting vessels using level sets.
Selected methods were chosen to be provided by the level set segmentation module.

Each method is implemented as a VTK/VMTK pipeline in the logic class SlicerVMTKLevelSetLogic of
the created module. These methods accept MRML nodes as well as primitive types as arguments and
return instances of the class SlicerVMTKLevelSetContainer to be able to pass more than one object. All
techniques were adapted from existing code in the Vascular Modeling Toolkit [Vmtk_SVN, folder
vmtkScripts/].

Initialization methods

The following initialization methods exist in VMTK and were integrated into the level set segmentation
module. Every method always expects a vikMRMLScalarVolumeNode as an input parameter.

Colliding Fronts

The algorithm starts two fronts — each from every seed point. The region compromised between these two points gets identified because
the fronts travel in opposite directions. Side branches are ignored. [Piccinelli2009, p. 2]

Parameters: 2 seed points, lowerThreshold, upperThreshold

Fast Marchin,

Fronts starting from the source points are propagated until they reach the target points. The region between gets segmented. This is
especially effective for segmenting round objects. [Vmtktut2009]

Parameters: n source points, n target points, lowerThreshold, upperThreshold

inputVolume::
ViMRMLScalarvolumehode ~— % VimageCast

}

H- vitkimageThreshold ———— vtkimageShiftScale

lowerThreshold::int S —

upperThreshold:int s——

sourcePoints: 1

vikMRMLF iducialListMode1

F- ConvertRASUK 5 vikvmikF astMarchingUpwindGradientimageFilter _ ' ytkimageMathematics

‘_X

SlicerVMT KlLevelSetCantainer

targetPoints:
wikMRMLFiduciallistMode2

Hllustration 3.15: Self created flow chart showing the VTK/VMTK pipeline of Fast Marching initialization
Colored flow chart elements show the following group memberships:

pink: input parameters based on MRML nodes or primitive types
green: VTK filters

blue: VMTKLevelSetSegmentation methods or output classes
purple: VMTK filters

22

Isosurface
A surface connects all voxels with intensity value greater or equal the isosurface value.

Parameters: isosurfaceValue

Threshold
All voxels between the given threshold get segmented.

Parameters: lowerThreshold, upperThreshold

Seeds
A region of three voxels around the placed seed points get segmented.

Parameters: n seed points

The flow chart diagram in Illustration 3.15 describes the VTK/VMTK pipeline of the Fast Marching
method. Additional flow chart diagrams describing initialization methods can be found in Appendix F.

Evolution methods
The level set segmentation module provides two evolution methods of VMTK to inflate the initial level
set:

1. Curves evolution (vtkvmtkCurvesLevelSetimageFilter) which is based on the ITK Curves filter [Lorigo2001]

2. Geodesic evolution (vtkvmtkGeodesicActiveContourLevelSetimageFilter) [Caselles1997].

Each requiring the following parameters [Antiga2008, p. 7]:
— Number of iterations, equals the number of deformation steps the model performs
— Propagation scaling: a weight for model inflation
— Curvature scaling: a weight for model surface regularization

— Advection scaling: a weight for the attraction of the image gradient modulus ridges

Before the evolution filters are used, a feature image is calculated using the VMTK filter
vtkvmtkGradientMagnitudelmageFilter.

_23 .

Changes to the 3D Slicer Base and KWWidgets

During this student research project, the following events were added to the KWWidgets classes and
have been committed into the official repository [KWWidgets_CVS].

vikKWWizardStep.h and_vtkKWWizardStep.cxx
The events ShowUserlInterfaceEvent, HideUserInterfaceEvent and ValidateEvent were added to enable event-driven wizards
[KWWidgets_CVS, rev. 1.3 and 1.6].

vikKWExtent.h and vikKWExtent.cxx
The events ChangeEvent, StartChangeEvent and EndChangeEvent were added to perform event-driven processing of the extent widget
[KWWidgets_CVS, rev. 1.42 and 1.55].

Also a bug in Slicer3/Libs/MRML/NVtkMRMLVolumeNode::SetlJ KToRASMatrix(vtkMatrix4x4* mat)
was fixed to prevent the modifying of the passed matrix argument while setting the transform matrix of
the node [Slicer_SVN, rev. 8937].

Additionally to the realized GUI, a prepackaged simple mode using a wizard (vtkKWWizard) was
planned but soon discontinued. A wizard-based solution should provide additional preprocessing and
post-processing steps which are not part of the original level set segmentation function in VMTK.
Nevertheless, the following changes were made to the 3D Slicer base to enable wizard functionality in
Python and were checked into the official repository [Slicer_SVN, rev. 8630].

Slicer3/Base/GUl/vtkSlicerApplicationGUI.cxx
The method PythonCommand(char cmd*) was fixed to work inside Scripted Modules including the passing of the Python dictionary.

Slicer3/Applications/GUI/Slicer3.cxx
The Python initialization code (line 1650) was moved to ensure that the Python dictionary is set during the loading of Scripted Modules.

Slicer3/Modules/ScriptedModule/vtkScriptedModuleGUI.h and vtkScriptedModule GUI.cxx
The methods Invoke (char* method, char* args) and Invoke (char* method) were added to enable vtkKWWizards in Python without using
events but by passing a specific method and optional arguments.

Slicer3/Base/GUI/Python/SlicerScriptedModule.py
The initialization of the logic and GUI part of Python modules (line 64) were moved to avoid a violation while accessing the module name.

_24 -

4 Results

The Vascular Modeling Toolkit libraries are available for 3D Slicer. With the successful connection of
these two complex software solutions, processing pipelines between VMTK code and other algorithms
can be established. Several techniques for three dimensional reconstruction, geometric analysis, mesh
generation and surface data analysis for image-based modeling of blood vessels or tubular structures are
then made accessible to the 3D Slicer developer.

Using the GUI-less module approach, a user friendly way of integrating the algorithms of the toolkit is
provided without requiring manual changes to the 3D Slicer base. The created module, called
VmtkSlicerModule, 1s open-source and available at the “VMTK in Slicer” project website (see
Appendix G) within a SVN repository. In order to eliminate the problem of backwardness, the module
always includes the newest version of the Vascular Modeling Toolkit libraries using SVN property
settings.

Additionally a level set segmentation module, referred to as VMTKLevelSetSegmentation, was created
as a Python Scripted Module to evaluate and proof the integration of VMTK. This module maps exactly
the level set segmentation process of the Vascular Modeling Toolkit into the “point-and-click™ end user
application 3D Slicer - including undoing and merging of specific segmentation stages.

VMTK provides different level set segmentation methods. A selection of five initialization and two
evolution methods are accessible through the 3D Slicer level set segmentation module. These methods
are maintainable and extendable without changing the structure of the module because of the class
design. Separating the included logic of the module into an isolated class provides possibilities for
automatic testing.

Standard techniques like MRML nodes were used as data containers in VMTKLevelSetSegmentation.
This enables the processing of segmentation results with other functions of 3D Slicer. For example,
generated models can be post-processed or fiducial values can be exported. The module itself is bound
to a MRML node as well and therefore it is possible to run different instances to perform several
segmentation tasks at the same time. The source code of is also available at the “VMTK in Slicer”
project website (see Appendix G).

During development enhancements and fixes to either the 3D Slicer base or KWWidgets were applied.

Segmentations using the two modules were performed and are selectively documented in the following
illustrations.

Lllustration 4.2: Coronaries segmented using the created

Hllustration 4.1: Cerebral vessels and a brain tumor
modules

segmented using the created modules

{3 s licer

~ Initialization

“ Evolution

4 Manipulate Slice Views

El @ mE

~ Manipulate 30 View

~ Help & Acknowledgement

Eile Edit View Window Help Feedback

@ E [V PR SR ——

“ Level:Set Segmentation Paramsters

Module Parameters: [yyrTkParameters

InputVolume: | avt_yoismall

© Choose inifialization methad

Isosurface Level Of Gray Values
Isosurface Lev el I

Scaling Weights:

Propagation scaling: [0.0
Curvature scaling: 0.0

Advection scaling: [1.0

Weicome| Colsing Fronts | Festarshing| 1sesuriace | Treshoid| Sseds|

(255

|35

[038142

7 [0.00036

Hlustration 4.3: Vessels of an arm segmented using the created modules

-25 -

-26 -

5 Discussion and Outlook

When using VMTK within 3D Slicer, one obstacle may be that the needed infrastructure is not directly
included in the application base. Thus it requires the downloading and installation of
VmtkSlicerModule from the project page. Despite this, the integration using the GUI-less module
approach still seems to be a suitable way of extending 3D Slicer. It leaves the 3D Slicer base untouched
and only requires users interested in VMTK to install the library. Also, the support for the 3D Slicer
Extension Build System should simplify the installation procedure.

By providing access to the Vascular Modeling Toolkit within 3D Slicer, the groundwork for further
development using VMTK algorithms is laid. Centerline computation or generating meshes are two
interesting possible applications for such modules. The created reference implementation supports
understanding of accessing the VMTK algorithms. Therefore it can be expected to see more modules
offering or using functionalities of VMTK in 3D Slicer.

The VMTK level set segmentation module maps the process of VMTK to a 3D Slicer module. Since
this process targets manual segmentation for research purposes, it does not include preprocessing or
post-processing steps and requires knowledge of the algorithms. So the module might not be usable as a
stand-alone level set segmentation solution for end users. Further enhancements could be:

- A wizard based interface for easier usage

- Volume of interest selection in advance of the segmentation process
- Including vessel enhancement filters as preprocessing steps

- Providing a prepackaged mode based on a robust algorithm

- 3D seeding inside the 3D Slicer rendering window

- Different coloring of individual vessel branches

All of the used and provided solutions are available as actively maintained open-source software
targeting large developer and user communities. Consequently, one can be excited about new projects
concerning the Vascular Modeling Toolkit in 3D Slicer.

-7 -

6 Bibliography

The following literature and resources were used during this student research project.

[Antiga2008]

[Antiga2009]

[Aylward2002]

[Caselles1997]

[Cmake2009]

[TTK2009]

[ITKVTK2009]

[Kirbas2004]

[KWWidgets_CVS]

[Kwwidgets2009]

[Lorigo2001]

[MrmlI2009]

Antiga L, Piccinelli M, Botti L, Ene-lIordache B, Remuzzi A,
Steinmann DA. (2008) An image-based modeling framework for patient-specific
computational hemodynamics. Med Biol Eng Comput 46(11):1097-1112

Antiga L (2009) Python and Slicer. NA-MIC AHM 2009, Salt Lake City.
http://tinyurl.com/SlicerPython (Last accessed 2009-05-01)

Aylward S (2002) Initialization, Noise, Singularities, and Scale in Height Ridge
Traversal for Tubular Object Centerline Extraction. IEEE Trans Med Imaging
21(2):61-75

Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput
Vis 22(1):61-79

CMake — Cross Platform Make.
http://www.cmake.org (Last accessed 2009-05-01)

ITK - Segmentation & Registration ToolKkit.
http://www.itk.org (Last accessed 2009-05-01)

Ibanez L, Schroeder W (2009) Getting Started with ITK+VTK. Insight Software
Consortium.

http://www.itk.org/CourseWare/Training/GettingStarted-II.pdf
(Last accessed 2009-05-01)

Kirbas C, Quek F (2004) A Review of Vessel Extraction Techniques and
Algorithms. ACM Comp Surveys 36(2):81-121

KWWidgets, CVS Repository.
http://kwwidgets.org/cgi-bin/viewcvs.cgi/?root=KWWidgets
(Last accessed 2009-05-01)

KWWidgets, Overview.
http://www.kwwidgets.ore/Wiki/KWWideets/Overview
(Last accessed 2009-05-01)

Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, Nabavi A,
Westin CF (2001) CURVES: curve evolution for vessel segmentation. Med Image
Anal 5:195-206

3D Slicer, MRML.
http://www.na-mic.org/Wiki/images/e/e3/Slicer3 MRML.ppt

http://www.na-mic.org/Wiki/images/e/e3/Slicer3_MRML.ppt
http://www.kwwidgets.org/Wiki/KWWidgets/Overview
http://kwwidgets.org/cgi-bin/viewcvs.cgi/?root=KWWidgets
http://www.itk.org/CourseWare/Training/GettingStarted-II.pdf
http://www.itk.org/
http://www.cmake.org/
http://tinyurl.com/SlicerPython

[Namic2008]

[NAMICkit2009]

[OpenGL2009]

[Piccinelli2009]

[Pilgrim2009]

[Sethian1999]

[Slicer_SVN]

[Slicer2009]

[Slicer2009b]

[Slicer2009¢]

-28 -
(Last accessed 2009-05-01)
3D Slicer, Architecture and Implementation.

http://www.na-mic.org/Wiki/images/5/5b/Slicer-Architecture-Implementation-
London-2008-10-15.ppt (Last accessed 2009-05-01)

The NA-MIC Kit.
http://wiki.na-mic.org/Wiki/index.php/Softwarelnventory
(Last accessed 2009-05-01)

OpenGL Graphics System, A Specification, Version 3.1.
http://www.opengl.org/registry/doc/glspec31.20090324.pdf
(Last accessed 2009-05-01)

Piccinelli M, Veneziani A, Steinman DA, Remuzzi A, Antiga L. (2009) A
framework for geometric analysis of vascular structures: applications to cerebral
aneurysms. IEEE Trans Med Imaging. In press.

M. Pilgrim (2009) Dive into Python. Online edition.
http://www.diveintopython.org/toc/index.html
(Last accessed 2009-05-01)

Sethian JA (1999) Level set methods and fast marching methods, 2™ edn.
Cambridge University Press, Cambridge

3D Slicer, SVN Repository.
http://viewvc.slicer.org/ (Last accessed 2009-05-01)

3D Slicer, Introduction.
http://slicer.org/pages/Introduction (Last accessed 2009-05-01)

3D Slicer, Integrating with Slicer 3.
http://slicer.spl.harvard.edu/slicerWiki/images/7/75/Integrating with Slicer3.ppt
(Last accessed 2009-05-01)

3D Slicer, Building a Slicer 3 Module GUI.
http://slicer.spl.harvard.edu/pages/Building a Slicer 3 Module GUI
(Last accessed 2009-05-01)

[Slicervmtklvlst_SVN]

[Tc12009]

VMTK in Slicer, SVN Repository.

http://www.nitrc.org/plugins/scmsvn/viewcvs.php/?root=slicervmtklvlst
(Last accessed 2009-05-01)

The Tcl/Tk Toolkit.
http://www.tcl.tk/ (Last accessed 2009-05-01)

http://www.tcl.tk/
http://www.nitrc.org/plugins/scmsvn/viewcvs.php/?root=slicervmtklvlst
http://slicer.spl.harvard.edu/pages/Building_a_Slicer_3_Module_GUI
http://slicer.spl.harvard.edu/slicerWiki/images/7/75/Integrating_with_Slicer3.ppt
http://slicer.org/pages/Introduction
http://viewvc.slicer.org/
http://www.diveintopython.org/toc/index.html
http://www.opengl.org/registry/doc/glspec31.20090324.pdf
http://wiki.na-mic.org/Wiki/index.php/SoftwareInventory
http://www.na-mic.org/Wiki/images/5/5b/Slicer-Architecture-Implementation-London-2008-10-15.ppt
http://www.na-mic.org/Wiki/images/5/5b/Slicer-Architecture-Implementation-

[Vmtk_SVN]

[VMTK2009]

[Vmtktut2009]

[VTK2009]

[Uspto2009]

[Yim2003]

-9

The Vascular Modeling Toolkit, SVN Repository.
http://vmtk.svn.sourceforge.net/viewvc/vmtk/ (Last accessed 2009-05-01)

Antiga L, Steinman DA (2008) The Vascular Modeling Toolkit.
http://www.vmtk.org/ (Last accessed 2009-05-01)

The Vascular Modeling Toolkit, Image Based Modeling Tutorial.
http://www.vmtk.org/Tutorials/ImageBasedModeling (Last accessed 2009-05-01)

VTK - The Visualization ToolKit.
http://www.vtk.org/ (Last accessed 2009-05-01)

US Patent and Trademark Office, Marching Cubes Algorithm, 1985.
http://tinyurl.com/MarchingCubes (Last accessed 2009-05-01)

Yim PJ, Vasbinder GBC, Ho VB, Choyke PL (2003) Isosurfaces as
deformable models for magnetic resonance angiography . IEEE Trans Med
Imaging 22(7):875 - 881

http://tinyurl.com/MarchingCubes
http://www.vtk.org/
http://www.vmtk.org/Tutorials/ImageBasedModeling
http://www.vmtk.org/
http://vmtk.svn.sourceforge.net/viewvc/vmtk/

-30 -

7 Appendix

A. Features available in the Vascular Modeling Toolkit, published at http://www.vmtk.org (Updated
2009-04-20)

Segmentation of vascular segments (or other anatomical structures) from medical images:

Gradient-based 3D level sets segmentation. A new gradient computation modality based on upwind finite
differences allows the segmentation of small (down to 1.2 pixels/diameter) vessels.

Interactive level sets initialization based on the Fast Marching Method. This includes a brand new
method for selecting a vascular segment comprised between two points automatically ignoring side
branches, no parameters involved. Segmenting a complex vascular tract comes down to selecting the
endpoints of a branch, letting level sets by attracted to gradient peaks with the sole advection term
turned on, repeating the operation for all the branches and merging everything in a single model.

Geometric analysis and surface data processing of 3D models of blood vessels (and tubular objects in
general)((The key algorithms have been published on medical imaging journals. You can find a complete
reference to publications at David Steinman's and Luca Antiga's homepages)):

Compute centerlines and maximal inscribed sphere radius of branching tubular structures given their
polygonal surface representation

Split surface models into their constitutive branches based on centerline geometry

Compute centerline-based geometric quantities (such as bifurcation angles, planarity, symmetry, branch
curvature, tortuosity) and surface-based geometric quantities (such as distance to centerlines, surface
curvature, deviation from tangency to maximal inscribed spheres)

Robustly map branches to a rectangular parametric space

Generate rectangular patches based on the parametric mapping for statistical analysis of geometric and
CFD data over populations.

Scripts, 1/0 tools and simple algorithms to easily work with images and meshes:

Read and write a number of image, surface and volume mesh formats. Includes a DICOM series reader
with auto-flipping capabilities, Netgen mesh format reader, libMesh xda mesh format writer, Tetgen mesh
generator wrapper, FIDAP FDNEUT mesh format reader and writer and a Newtetr input file generator
Display images and meshes

Incapsulate several VTK classes and make them available as pipeable scripts (e.g. Marching Cubes,
surface smoothing, clipping, normal computation, connectivity, subdivision, distance between surfaces,
ICP registration)

Add cylindrical extensions to surface model boundaries as a preprocessing step for CFD simulations.
Generate boundary layers of prismatic elements with varying thickness for CFD

http://www.vtk.org/
http://tetgen.berlios.de/
http://libmesh.sourceforge.net/
http://www.hpfem.jku.at/netgen
http://villacamozzi.marionegri.it/~luca
http://www.mie.utoronto.ca/labs/bsl/
http://www.vmtk.org/
http://www.vmtk.org/
http://www.vmtk.org/

B. Slicer MVC Pattern (Updated 2008-10-15) [Namic2008]

Edil

Chee re

Logic b e

Nm

“Qbserve" means generic event mechanisms
are used to pass information.
“Edit" means code can directly call methods.

Example: GUI can call methods in Logic classes,
but Logic cannot call GUI methods.
MRBML cannct call Logic or GUI methods.

There can be many observers for any event.

MRML (Model)
— For Scene Description and Application State
— MRBML Nodes are Persistent and Undoable
— Scene and Nodes are Observable
Logic Encapsulate VTK and ITK Pipelines (Controller)
— Observe MBML to Configure Pipelines
— Help Create/Manage Nodes

— No Ul Components (no Widgets, Actors, Mappers,
Renderers or RenderWindows)

GUI (View)
— Observe and Edit MRML
— Interact with User and Display Hardware

Modules Should Follow Same Conventions

-3l -

C. Self created class diagram showing the individual classes of the evolution methods

SlicerVMTKLevelSetGul | # ParentClass SlicervMTKAdvancedPageSkeleton

_parentFrame
_parentClass

+_init__()
+ Destructorl)
SlicerVMTEKEvolutionWelcomeGUI + Builds Ul
D + AddGUIObservers()

+ RemoveGUI0bsarvers()
+ ProcessGlU | Events()
+ UpdsateMRMLI)

_welcorneMessage

+ UpdateGUIQ)
+ DeleteFiduciallistsFromScenel)
Only the attributes of the inherited + HandleClickinS liceWindowWithC oordinates()
classes are diSﬁlaaved. Each inherited + Executel]
class calls methods from + Reset{]
SlicervMTK LevelSetSUIHelper
and ,
SlicervMTE LevelS etLogic
via the _parentClass attribute.
SlicerVMTEEvolutionGeodeasicGUI SlicerVMTEEvolutionCurvesGUI
_tterationsThurnbwheel # _terationsThurmbwheel
_weightsFrame # _weightsFrame
_propagationS calingSpinBox # _propagationScalingSpinB ox
_curvatureScalingS pinB ox # _curvatureScalngSpinBox
_advectionScalingS pinB ox # _advectionScalngSpinBox
_startButton # _startButton
_resetButton # _resetButton
_startButtonTag # _startButtorTag
_resetButtonTag # _resetButtonTag

-33 -

D. Self created screen shot of the level set segmentation module in 3D Slicer

COREE'E"

1Ewsen e

e

MOPUIM J8pusl
ul paresausb [spojN

[LITEEE)

suoh e

G
€=l

ElS
e (2]

#al S sieindivey o

© @E =

[@ T] 6

smala 2a1|g aEndiuey

a|npow uoleluswbas
18S [oA8] 8y |

uopn|oAg o

ydaooy @) opun @ prv @

uoREZIEMY| ,

£4IUBIG JBUIOUE PPY SSUDP UOREZ|BRY| &)
BW IR | auinjos, jndy)

SI8WRIEY LA | siajaweied ainpopy

5I8]9WEIE S UONBIUSWGAE 19819487 o

Wawabpamouydy B digH L

4221|50¢

¢ ¢ |[EE 0 E 7R R E E Y o] D] [w] [[[memeeenemnd s

Weqpaad diaH MOPulRl maln

wps aid

eyd|y £° Uoisiap 1321is ae

-34 -

E. Additional screen shots of the Level Set segmentation module GUI

@ 3DSlicer

~ Help & Acknowlzdgement

3DSlicer

* Level-Set Segmentation Parameters

¥ Help & Acknowledgement
Module Parameters: | yTkParameters — j

“ Level-Set Segmentation Parameters
Module Parameters: |y TKParameters — j INputVolume: | HeadhRA — i
InputVolume: | HegdrRA - ;’I & Choose initialization method,

“* Initialization

&) Choose initialization method.. WEIEDmeI Colliding an(sl Fas(Marchlngl Isusurfzn:el Thrashnldl Seadsl

Beeds

Add Seed Point

<no seed points»

* Initialization

Welcumel Colliding Fruntsl Fast Marching \susuﬁacel Threshuldl Seedsl

Threshold Of Gray Values

Gray Walues of Vessels [1527

1l
gl

I

Cancel Start! |
Canoel | Start |
|| &3 add H & undo H & Acoept || “ €5 aad H & undo || @ accept ”
T Evoiution ~ Evalution
|| & undo H @ Accept || “ @ undo H @ accent ”
Threshold initialization Seeds initialization
3DSlicer

T Help & Acknowledgement

“ Level-Set Segmentation Parameters

Module Parameters: | yWTKParameters — j
Input Volume: | HegdMRA — j

&) Choose evolution methad..

~ Initialization

&3 add || & undo || & nccept ||

“* Evolution

Welcome | Geodesicl Curves I

Wumber of iterations {300

Scaling Weights:

Propagation scaling: 0.0 =
Curvature scaling: [0.0 =

Advection scaling: 1.0 =

b

Cancel Start!

“ & undo H & accept ||

Geodesic evolution

-35-

F. Additional flow chart diagrams, showing the VITK/VMTK pipelines of VMTKLevelSetSegmentation

inputV olume:
wikMRMLScalarVolumeNode

lowerThreshold: int

upperThreshold:int

sourcePoint::
vtkM RMLF iducialListModea1

targetPoint
vikMRMLFiducialListNode2

D — vikimageCast

l

H ConvertRASZJK e

M= vtkimageThreshold =——— yikimageShiftScale

=

vikvmtkCollidingFrontslmagef iter

——» vikimageMathematics

!

SlicerMT KLevelSetContainer

Hllustration 7.2: Self created flow chart showing the VTIK/VMTK pipeline of Colliding Fronts initialization

inputy olume::
vtkMRMLScalarvolumeNade

————3 vikimageCasgt

vitklmageMathematics

isosurfaceValug int g ViimageMathematics ___ “SlicerVMTKLevelSetContainer

Hllustration 7.1: Self created flow chart showing the VTK pipeline of Isosurface initialization

inputy olume::
vikMRMLScalarvolumehode ~—* VtkimageCast

}

= VikimageThreshold g SliceryMTKLevelSetContainer

lowerThreshold:int ——

upperThreshold:int —

Hlustration 7.3: Self created flow chart showing the VTK pipeline of Threshold initialization

GetScalars().FilComponent()

inputValume

VtkMRMLScalatvolumeMode " vidmageCast ———cp. vikPointData [vikDilateErode3D

T

seedPoints ConvertRAS2IJK ———p GetScalars).SetComponent) Slicery MTKLevelSetContainer

VtkMRMLF iducialListiocdet y

Hlustration 7.4: Self created flow chart showing the VTK pipeline of Seeds initialization

-36 -

_37-

G. Screen shot of the NITRC project page of VMTK in Slicer and the Level Set Segmentation Module

trc.org/projects/slicervmtklvlst/, updated 2009-04-27)

/lwww.ni

(http

wa)skg Bunjorl | yopey
([E103 0/ uedo 0) seyoleq -

wesAg Buryoesr] poddng yos)
{ [e301 0 Uedo o) poddng -

washg Buyoed | Bng
{ et 0/ usdo o) sbng -

layorl PE

afed aWwoH sunosay/joo | =

sealy 2||qnd

.myznmm__,._ooﬁmziokm_ﬂm__m.:mmmmmETgm_.;
[‘@UN0SAL|00) S|Y3 104 BqE|IEAR SPES) SSY 40 IS)| B MBI
'39(15(JR1S AJAIITE S2UN0S8.|00] MBIA

) %:00'pL @l d KIADY

£2:0} L 1-20°6008 ‘pielsiBey

) 1BUO Y0 gy PUN 'gy WODIT HBuLeS Bleq peyoddng

i uoyihg ebenBue Buiweiboly

O BAXINM/XISOd '@y SMOPUIM 'y SOOI 1weisdg Bujleisdo
a» ysiBu3 abenbue jeinjey

) 25USDM J82)IS O 'gy @SUSM OSE @susan

#h SI8sn) pUT gy sledojeAsr] BoUS PNy pSpUSIU|

@ suoiealdey |1X 'qy (sMopuI SIN) ZEUIAA JuSWUOIIALT

. o eydly - £ :sniElS Wewdojsasq

o voneziensip gy vonewswies gy Bulspopy lofeley

S8jop ON | FUoNEuaWnIog sajop oN | uonelesu| s8jop ON | ClIBlaAQ
(0) smelrey 189S gy SMeIAeY 1§ sBujjey

1ayomi|
1821|S (E Ul pejgeus A|us0a) useq sAEL LDIYM SPOLBLL 3OEQ|[ED PUE UOIJOREI Was

1581E| BU} S83N J| 85NEOS] S|NPOLU UOUIAG SA1TEISIUI UE 10} 8|dLLIEXS UE SE pAISp|SUCD 8¢ OS[E UBD 8NPOW SIUL U89l|S O Ul M1INA 1817 BuyEn
122 0} moy Bumwoys spiseq SINpow SIYL yim nj 2 UED S2UNJOMUIS JBINGN | PUB S8SS8/ Jo Uoleluswbas 1BS-[2asT Jo ysElay | i
uolEluawBaSIaS[EATY LINA SINpoy wo0n

[weea] wewdogasg ulor o] 1sanbey] yaissg pasusapy

1L PUB UOYIAG '++0) BIA - JUSLLILOIIAUS JSDI|S (€ 8L} UL PSSSSD0E &q UeD AJ[ELONAUNG 3 1A

[siequie iy maip] ale(dwoo ey} 'BulleIsul a1y U80S dE Ul iyjeo | Bulgpoly JBnosen 2yl jo uoisien Welidogasp 15818] &4} 52 |qBUS S|npow ssapin sy | HLNA ===
SINPOHSOSHIWA SINPOY 1935 g8 <<=
ULEEH [BIUEQ - sBupEy/smaiAsy
i (B0 ie)]s manny; ey ABwwng
12011 e ul (B0 WA wamduy) Wjoo | Bulepoly JEBNISEA SU1 J0 SUOIIOUN) S|qEUS L2IYM S3NPoW Jo Seles B saplaoid josloud sy
s HIERRH 190115 GE U1 MLWA
Fpwees | | (= =ainessijoo) su i yaress | »511_..52 .s._man,mﬁ_v.uega.nz4._52_»?5_558_.51

qu_aﬁ.. , GEE2MINs UL UWH_I_I_Z @

	1 Introduction
	2 Fundamentals
	Python
	VTK/ITK
	CMake
	VMTK
	KWWidgets
	3D Slicer

	3 Methodologies
	Manual Integration
	GUI-less Module based Integration
	Using VMTK in 3D Slicer
	Level Set Segmentation
	An Example Level Set Segmentation using VMTK
	Level Set Segmentation Work flow

	Design of the created Level Set Segmentation Module
	Class Design
	Graphical User Interface

	Implementation of the created Level Set Segmentation Module
	Calling Level Set Segmentation Methods of VMTK
	Initialization methods
	Evolution methods

	Changes to the 3D Slicer Base and KWWidgets

	4 Results
	5 Discussion and Outlook
	6 Bibliography
	7 Appendix

