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Abstract

Experimental evidence suggests that epidermal growth factor receptor (EGFR)-mediated activation of the signaling protein

phospholipase Cg plays a critical role in a cancer cell’s phenotypic decision to either proliferate or to migrate at a given point in time.

Here, we present a novel three-dimensional multiscale agent-based model to simulate this cellular decision process in the context of a

virtual brain tumor. Each tumor cell is equipped with an EGFR gene-protein interaction network module that also connects to a

simplified cell cycle description. The simulation results show that over time proliferative and migratory cell populations not only oscillate

but also directly impact the spatio-temporal expansion patterns of the entire cancer system. The percentage change in the concentration

of the sub-cellular interaction network’s molecular components fluctuates, and, for the ‘proliferation-to-migration’ switch we find that

the phenotype triggering molecular profile to some degree varies as the tumor system grows and the microenvironment changes. We

discuss potential implications of these findings for experimental and clinical cancer research.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Malignant brain tumors such as glioblastoma exhibit
complex growth patterns. Interestingly, experimental ob-
servations of such high-grade gliomas suggest that at the
same point in time, migrating tumor cells do not proliferate
and conversely proliferating ones do not migrate. While
this led Giese et al. (1996) to propose the intriguing concept
of ‘‘dichotomy’’ in gliomas, the exact molecular mechanism
governing this reversible switch has not yet been clearly
established and, moreover, the impact any such molecular
event potentially has beyond the scale of a single cancer cell
remains to be properly evaluated. In this situation, in silico

modeling can help by integrating data and yielding
experimentally testable hypotheses. In this context, it is
e front matter r 2006 Elsevier Ltd. All rights reserved.
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noteworthy that the epidermal growth factor (EGF)
receptor (EGFR) pathway has been shown to be involved
at various steps in tumorigenesis, also in gliomas (Chicoine
and Silbergeld, 1997), and its role for the phenotypic switch
has already been suggested in the case of breast cancer
(Dittmar et al., 2002). As a starting point, in an effort to
simulate this phenotypic ‘switch’ behavior, we have there-
fore integrated a cell cycle module taken from the literature
(Alarcon et al., 2004; Tyson and Novak, 2001) into our
previously developed EGFR gene-protein interaction net-
work model (Athale et al., 2005). In our new model now,
each cell utilizes the value state of its molecular network to
‘decide’ its microscopic phenotype, i.e., migration, prolif-
eration, quiescence, or apoptosis—at every point in time.
On the micro-macroscopic level, a fixed three-dimensional
lattice is employed to represent a virtual block of brain
tissue, while in the molecular environment, the phenotypic
behavior of a cell is determined by the dynamical changes
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in the concentrations of the interacting molecular species
both inside and around the tumor cell. The result is a closer
step towards a comprehensive multiscale model of a
malignant brain tumor that not only can forecast the
overall tumor growth dynamics but also monitor the
dynamical changes within each cell’s molecular network
and the profiles, respectively, that trigger the phenotypic
switch. In the following section we briefly review relevant
works.

2. Previous works

The EGF/EGFR cell signaling system has been studied
extensively, both in experimental and theoretical works.
For instance, Starbuck and Lauffenburger (1992) suggested
a mathematical model for receptor-mediated cell uptake
and processing of EGF. This model simulates the
mitogenic signal generated by EGF/EGFR binding to the
cell surface via stimulation of receptor tyrosine kinase
activity. In addition, Chen et al. (1996) revealed a possible
role for a phospholipase C dependent feedback mechanism
that attenuates EGF-induced mitogenesis. Further, the
model of Schoeberl et al. (2002) offered an integrated
quantitative dynamic and topological representation of
intracellular signal networks, based on known components
of EGF receptor signaling pathways. Lastly, employing a
hybrid modeling approach, Sander and Deisboeck (2002)
argued that both strong heterotype chemotaxis and strong
homotype chemoattraction, such as through the EGF
analogue transforming growth factor alpha (TGF-a), are
required for branch formation within the invasive zone of
microscopic brain tumors. And indeed, Wang et al. (2005)
demonstrated that chemotactic cell migration in response
to EGF are correlated with invasion, intravasation and
metastasis in animal models of breast cancer.

More recently, so-called multi-scale modeling platforms
that span several biological levels of interest drew atten-
tion, because of their potential to integrate molecular and
multicellular experimental data. For instance, in previous
works from our laboratory (Mansury et al., 2002; Mansury
and Deisboeck, 2003; Mansury and Deisboeck, 2004a, b),
we concentrated on bridging the macroscopic, microscopic
and molecular tumor scales. Specifically, Mansury and
Deisboeck (2003) proposed a two-dimensional agent-based
model in which the spatio-temporal expansion of malig-
nant brain tumor cells is guided by environment hetero-
geneities in mechanical confinement, toxic metabolites and
nutrient sources to gain more insight into the systemic
effect of such cellular chemotactic search precision
modulations. With this model they continued to investigate
the relationship between rapid growth and extensive tissue
infiltration (Mansury and Deisboeck, 2004a). Moreover,
by calibrating the expression of Tenascin C and PCNA
using experimental brain tumor data for the migratory
phenotype while generating the gene expression for
proliferating cells as the output, numerical result from this
model (Mansury and Deisboeck, 2004b) confirmed that
among the migratory phenotype the expression of Tenascin
C is indeed consistently higher, while they reveal the reverse
for the proliferating tumor cells, which exhibit consistently
higher expression of the proliferating cell nuclear antigen
(PCNA) gene. Athale et al. (2005) extended this agent-
based, primarily ‘micro-macro’ framework down to an
even more enriched sub-cellular level, thus developing a
multiscale cancer model that allows monitoring the
percolation of a molecular perturbation throughout the
emergent multi-cellular system. Particularly, this model
introduced a simplified EGFR pathway as a signal
processing module that encodes the switch between the
cell’s microscopic phenotypes of proliferation and migra-
tion. The results showed further in silico evidence that
behavioral decisions on the single cell level impact the
spatial dynamics of the entire cancerous system. Further-
more, the simulation results yielded intriguing experimen-
tally testable hypotheses such as spatial cytosolic
polarization of PLCg towards an extrinsic chemotactic
gradient (Devreotes and Janetopoulos, 2003). While this
work already implicitly acknowledged the existence of a
cell cycle, it however lacked a detailed representation of the
cell cycle. Based on the works by Tyson and Nowak (2001)
who represented eukaryotic molecular mechanisms as sets
of nonlinear ordinary differential equations and used
standard analytical and numerical methods to study their
solutions, Alarcon et al. (2004) applied a revised version of
their model to the case of cancer cells under hypoxic
conditions. While Alarcon et al. (2004) left hypoxia tension
constant, in our study here, hypoxia tension is considered a
dynamic external condition. Therefore, we first modified
their cell cycle module to be able to correlate it with the
location of the cell and then integrated it into our
previously developed multiscale agent-based model (Athale
et al., 2005). The next section details the setup of the model.

3. Mathematical model

Our multi-scale model incorporates both macro-micro-
scopic and molecular environments. In the following
sections, we will illustrate the characteristics of these
environments, proceeding in a top-down manner.

3.1. Macro-microscopic environment

We first create a three dimensional rectangular lattice
that consists of a grid with 100� 100� 100 points in size
representing a block of virtual brain tissue. Each lattice site
will be assigned a value of TGFa (X1), of glucose (X14), and
oxygen tension (k44) representing these external chemical
cues by normal distribution. To display the effect of
chemotaxis, the three dimensional lattice is divided into
four cubes, depicted in Fig. 1.
The levels of these distributions are weighted by the

distance, dijk, of a given cell from the center of cube 4,
computed by the previously reported L-infinity metric of
measurement (Mansury et al., 2002). The center of cube 4 is
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Fig. 1. Shown is the underlying 3D lattice, with cube 4 harboring the

nutrient source (see text for details).

L. Zhang et al. / Journal of Theoretical Biology 244 (2007) 96–10798
assigned the highest glucose and TGFa concentrations as
well as oxygen tension value, hence rendering it the most
‘‘attractive’’ for the chemotactically acting tumor cells.
Note that each grid point can be occupied by only one cell
at each time step. The chemotaxis distributions of TGFa,
glucose and oxygen tension are described by these under-
lying equations:

X
ijk
1 ¼ Tm expð�2d2

ijk=s
2
t Þ, (1a)

X
ijk
14 ¼ Ga þ ðGm � GaÞ expð�2d2

ijk=s
2
gÞ, (1b)

k
ijk
44 ¼ ka þ ðkm � kaÞ expð�2d2

ijk=s
2
oÞ, (1c)

In Eq. (1a), Tm stands for the maximum TGFa

concentration in the tumor (Moskal et al., 1995), st is the
parameter that controls the dispersion of the TGFa level. In
Eq. (1b), Ga is the minimum blood glucose level while Gm

stands for the maximum concentration of glucose in blood
(Freyer and Sutherland, 1986), with sg being the parameter
controlling the dispersion of glucose. Likewise, in Eq. (1c),
ka is the minimum oxygen tension and km represents the
maximum oxygen tension (Alarcon et al., 2004), so is the
parameter controlling the dispersion of the oxygen tension
level. Note that high oxygen tension equals a low level of
hypoxia and vice-a-visa.

To begin with, five hundred cancer cells are initialized at
the center of the lattice [50, 50, 50] and a replenished
nutrient point source, representing a blood vessel, is set in
the center of cube 4. When the first cancer cell reaches this
location, the simulation is terminated. Glucose and
external TGFa (TGFa_ex) concentrations are the two major
chemoattractive cues in this macro-microscopic environ-
ment. Glucose (X14) continues to diffuse throughout the
three dimensional lattice with a fixed rate and only the
location that harbors the peak concentration is replenished
at each time step. Furthermore, as a nutrient it is
continuously taken up by cells to maintain their metabo-
lism. In Eq. (2a), t represents the time step while ijk stands
for the position on the three dimensional lattice and rn is
the cell’s glucose uptake coefficient (Mansury et al. 2002).
D1 is the diffusion coefficient of the glucose (Sander and
Deisboeck, 2002).

X t
14 ¼ X t�1

14 � rn, (2a)

qX
ijk
14

qt
¼ D1r

2X
ijk
14 ; t ¼ 1; 2; 3; . . . . (2b)

TGFa is an autocrine produced hormone which can, in
addition, act in a paracrine fashion as well as juxtacrine
manner (Shvartsman et al., 2001) through triggering, as
EGF analogue, the EGF-receptor pathway. Thus, cells not
only can take up their own TGFa but also that secreted by
bystander cells. Here, TGFa (X1) degrades and diffuses to
its neighborhood at each time step. Furthermore, (aside
from the cells’ autocrine secretion) its ‘external’ replenish-
ment is again restricted only to the site of the virtual blood
vessel in cube 4 (compare with Fig. 1). It follows that

X t
1 ¼ X t�1

1 þ ST , (2c)

qX
ijk
1

qt
¼ D2r

2X
ijk
1 ; t ¼ 1; 2; 3; . . . , (2d)

where D2 is the TGFa diffusion coefficient (Thorne et al.,
2004) and ST is the TGFa secretion rate (Forsten and
Lauffenburger, 1992).
Based on the experimentally determined diffusion dis-

tance of oxygen in tissue, we have limited it to a (rescaled)
100 mm distance from the location of the blood vessel
(Carmeliet and Jain, 2000). Thus the oxygen diffusion
process can be described with the following equation:

qk
ijk
44

qt
¼ Dor

2k
ijk
44 ; t ¼ 1; 2; 3; . . . (2e)

where Do stands for the diffusion coefficient of oxygen
(Carmeliet and Jain, 2000). The values of the aforemen-
tioned coefficients are listed in Tables 1–4.

3.2. Molecular environment

Turning now to the molecular environment which is
comprised of both, an EGFR gene-protein interaction
network and a cell cycle subsystem. The EGFR gene-
protein interaction network is designed to simulate how the
cell processes its phenotype decision with regards to
proliferation and migration whereas the cell cycle is added
to complement the proliferation process explicitly.

3.3. EGFR gene-protein interaction network

As discussed in detail in Athale et al. (2005), induced by
the state of its regulatory EGFR gene-protein interaction
network (and its microenvironmental cues) a given cell will,
at any point in time, choose its phenotypic trait such as
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Table 1

Symbols of the EGFR gene-protein interaction network taken from the

literature (Athale et al., 2004; Thorne et al., 2004; Sander et al., 2002)�

Symbol Variable Initial value

(nM)

X1 TGFa extracellular protein 1

X2 EGFR cell surface receptor 25

X3 Dimeric TGFa�EGFT cell surface

complex

0

X4 Phosphorylated active dimeric

TGFa�EGFR cell surface complex

0

X5 Cytoplasmic inactive dimeric

TGFa�EGFR complex

0

X6 Cytoplasmic EGFR protein 0

X7 Cytoplasmic TGFa protein 1

X8 EGFR RNA 1

X9 TGFa RNA 0

X10 PLCg inactive, Ca-bound 1

X11 PLCg active, phosphorylated, Ca-bound 0

X12 Nucleotide pool 5

X13 Glucose cytoplasmic 1

X14 Glucose extracellular 0

�Note (for Tables 1–4): Reasonable estimates were used where no

published values were available.
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migration, proliferation or quiescence or turn apoptotic.
All molecular species and the coefficients of this network
are listed in Tables 1 and 2, respectively.

In brief, as displayed in Fig. 2 each agent or virtual
tumor cell has four layers, i.e., the external space, the cell
membrane, the cytoplasm and the nucleus. In the external
space and membrane layers, there are glucose, TGFa_ex,
EGFR_s, TGFa�EGFR_s and ppTGFa�EGFR_s variables.
TGFa_ex (X1) binds to the receptor EGFR_s (X2) and
rapidly dimerizes to 2TGFa�EGFR_s (X3) (Starbuck and
Lauffenburger, 1992) which in turn is then autopho-
sphorylated to 2ppTGFa�EGFR_s (X4). The following
equations represent these processes:

dX 1

dt
¼ k�1X 3 � k1X 1X 2 þ k9X 7 � k11X 1, (3)

dX 2

dt
¼ k�1X 3 � k1X 1X 2 þ k8X 6 � k�8X 2, (4)

dX 3

dt
¼ 2 � k1 � X 1 � X 2 � 2 � k�1 � X 3 � k2 � X 3½1þ wgX 13�

� k3 � X 3 þ k�2X 4 þ
V M2:X 11

KM2 þ X 11
X 4, ð5Þ

dX 4

dt
¼ k2 � X 3½1þ wgX 13� � k�2 � X 4 � k4X 4

�
VM2:X 11

KM2 þ X 11
X 4. ð6Þ

Once internalized, the cytoplasmatic TGFa�EGFR com-
plex (X5) dissociates reversibly to cytoplasmic EGFR (X6)
and TGFa (X7), denoted by

dX 5

dt
¼ k3 � X 3 þ k4 � X 4 þ 2 � k�5 � X 6 � X 7 � 2 � k5 � X 5,

(7)

dX 6

dt
¼ k5 � X 5 � k�5 � X 6 � X 7 � k8 � X 6 þ k�8 � X 2

þ k12 � X 8 � k6 � X 6, ð8Þ

dX 7

dt
¼ k5 � X 5 � k�5 � X 6 � X 7 � k9 � X 7 þ k15 � X 9 � k7 � X 7

(9)

There is evidence that increased internalization of X3 and
X4 leads to down-regulation of EGFR RNA (X8) expression
and thus diminished protein content (Hamburger et al.,
1991), whereas EGFR activation by ligand binding
increases TGFa RNA (X9) synthesis. Both RNA species
are being transcribed and translated at a constitutive rate
(Maruno et al., 1991; Van der Valk et al., 1997) and both,
protein and RNA are constantly degraded (Mader, 1988),

dX 8

dt
¼ k13 � X 12 � k14 � X 8, (10)

dX 9

dt
¼ k17 � X 12 � k16 � X 9 þ k18 � X 4, (11)

with X12 being the pool of nucleotides. The increased
phosphorylated TGFa�EGFR complex accelerates the rate
of transition from inactive PLCg (X10) to active PLCg

(X11). This active PLCg exhibits negative feedback inhibi-
tion of X4 (Chen et al., 1994, 1996; Wells, 1999) and is
represented by

dX 10

dt
¼ k21 � X 11 � k20 � ðk29 � X 11Þ � X 4, (12)

dX 11

dt
¼ k20 � ðk29 � X 11Þ � X 4 � k21 � X 11, (13)

dX 12

dt
¼ k16 � X 9 þ k14 � X 8 � k13 � X 12 � k17 � X 12, (14)

The intracellular glucose concentration (X13) increases
through uptake (Noll et al., 2000) from the extracellular
glucose pool (X14) yet is depleted by both, TGFa�EGFR

phosphorylation (Eq. (4)) (Hertel et al., 1986; Steinbach et al.,
2004) and cell metabolism (Eq. (1)), and is described as

dX 13

dt
¼ k23 � X 14 � k2 � X 3 � X 13 � k28 � X 13. (15)

3.4. Cell cycle

The central element of our simplified module here is the
biological ‘on-off’ cell cycle switch put forward by Tyson
and Novak (2001). Our network also accounts for the
effect of hypoxia and protein p27 on cell division by
incorporating the module previously developed by Alarcon
et al. (2004). In their cell cycle module, the switching
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Table 2

Coefficients of the EGFR gene-protein interaction network taken from the literature (Athale et al., 2004; Thorne et al., 2004; Sander et al., 2002)

Coefficient Value Units Description

k1 3� 10�3 nM�1 s�1 TGFa�EGFR cell–surface complex formation rate

k�1 3.8� 10�3 s�1 Rate of dissociation of TGFa�EGFR cell–surface complex

k2 1� 10�3 s�1 Rate of TGFa�EGFR phosphorylation

k�2 1� 10�6 s�1 Rate of TGFa�EGFR dephosphorylation

k3 5� 10�5 s�1 Rate of cell–surface TGFa�EGFR internalization

k4 5� 10�5 s�1 Rate of phosphorylated TGFa�EGFR internalization

k5 1� 10�2 s�1 Dissociation rate of cytoplasmic TGFa�EGFR

k�5 1.4� 10�5 nM�1 s�1 Reverse dissociation rate of cytoplasmic TGFa�EGFR

k6 1.67� 10�4 s�1 Rate of cytoplasmic EGFR protein degradation

k7 1.67� 10�4 s�1 Rate of cytoplasmic TGFa protein degradation

k8 5� 10�3 s�1 Rate of cytoplasmic EGFR insertion into the membrane

k�8 5� 10�5 s�1 Rate of cell–surface EGFR internalization

k9 1 s�1 Rate of membrane insertion and secretion of TGFa
k10 0.01 s�1 Rate of down-regulation of EGFR expression by the TGFa�EGFR complex

k11 0.01 s�1 Degradation of extracellular TGFa
k12 0.083 s�1 Rate of translation of EGFR RNA

k13 0.036 s�1 Basal transcription rate EGFR RNA

k14 1.2� 10�3 s�1 EGFR RNA degradation rate

k15 0.083 s�1 Rate of translation of TGFa
k16 0.02 s�1 TGFa RNA degradation rate

k17 0.2 s�1 Basal transcription rate TGFa_rna

k18 10�3(kM1, VM1, w1) s�1 Induction of TGFa transcription by activated TGFa�EGFR at the cell surface

kM1 1 nM Km of TGFa RNA transcriptional activation

VM1 5 nM�1 s�1 Rate of TGFa RNA transcriptional activation

w1 1 dimensionless constant

(DC)

Weight of Hills’ coefficient of TGFa RNA activation

k19 0.1 nM�1 s�1 Enhanced rate of PLCg activation by EGFR

k20 0.1 nM�1 s�1 Basal rate of activation of PLCg

k21 0.05 s�1 Rate of in-activation of PLCg

k22 kM2, VM2, w2 s�1 PLCg dependent rate of de-phosphorylation of phosphorylated TGFa�EGFR

kM2 5 nM Km PLCg inhibition of phosphorylated surface TGFa�EGFR

VM2 0.25 nM�1 s�1 PLCg inhibition rate of TGFa�EGFR

w2 1 DC Weight of Hill’s coefficient PLCl inhibition of phosphorylated surface

TGFa�EGFR

k23 0.1� 10�3 s�1 Lumped rate of glucose uptake

k24 0.01 nM�1 s�1 Increased rate of TGFa�EGFR phosphorylation by glucose

wg 5 DC Weight of increase in rate of TGFa�EGFR phosphorylation by glucose

k25 3.5� 10�3 nM�1 s�1 Migratory signal

k26 3.5� 10�3 nM�1 s�1 Mitotic signal I

k27 0.0002 nM Mitotic signal II

k28 0.7 s�1 Cytoplasmic glucose rate of degradation

k29 1 nM Constant total PLCg

rn 0.7 mmol step�1 Glucose exhausting coefficient

D1 6.7� 10�7 cm2 s�1 Diffusion coefficient of glucose

D2 5.18� 10�7 cm2 s�1 Diffusion coefficient of TGFa

Do 8� 10�5 cm2 s�1 Diffusion coefficient of oxygen tension

Tm 147718 pgml�1 Maximum concentration of TGFa

Ga 17 mmolL�1 Normal concentration of glucose

Gm 57 mmolL�1 Maximum concentration of glucose

ST 0.3 moleculesmin�1 Secretion rate of TGFa

ka 0.0017 DC Normal concentration of oxygen

km 0.0025 DC Maximum concentration of oxygen
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behavior arises from the antagonism between cdh1-APC
complexes (X15) and cyclin-CDK (X16), with the mass of
cell (X17) triggering the aforementioned switch. Cell
division occurs when X15ok30 and X164k31, where k30
and k31 denote thresholds of cdh1-APC complexes and
cyclin-CDK, respectively. From Fig. 2 we can deduce that
protein p27 (X18) is up-regulated under hypoxic conditions.
Eq. (19) is employed to show this relationship, i.e., if
hypoxia is low, the cell will have less protein p27, implying
a shorter cell cycle. Inversely, if hypoxia is high, more
protein p27 is generated, resulting in an inhibition of the
cell cycle. This inhibitory effect of protein p27 (X18) on the
cyclin-CDK (X16) is incorporated in Eq. (17) through an
additional decay term that is proportional to the concen-
tration of p27. Moreover, Eq. (18) describes the value
changes of the mass of the cell (X17) during cell cycle which
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Table 3

Symbols of the cell cycle module taken from the literature (Tyson and

Novak 2001; Alarcon et al., 2004)

Symbol Variable Initial value (DC)

X15 cdh1-APC complex 0.9

X16 cyclin-CDK 0.01

X17 Mass of the cell 5

X18 Protein p27 0

X19 RBNP 1

Table 4

Coefficients of the cell cycle module taken from the literature (Tyson and

Novak 2001; Alarcon et al., 2004)

Coefficient Value Units

k30 0.004 DC

k31 0.05 DC

k32 10 min�1

k33 35 min�1

k34 0.04 DC

k35 0.04 DC

k36 0.4 min�1

k37 1 min�1

k38 0.25 DC

k39 0.04 min�1

k40 0.01 min�1

k41 10 DC

k42 0.007 DC

k43 0.01 DC

k44 0.0017–0.0025 DC

k45 0.01 DC

k46 0.01 DC

k47 0.1 DC
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impacts p27 (X18) via Eq. (19). Another feature of Alarcon
et al.’s (2004) module is the effect of phosphorylated
retinoblastoma protein, RB. That is, non-phosphorylated
RB (RBNP (X19)) is known to inhibit CDK (X16) activity
(Knudsen et al., 1999) while phosphorylated RB has no
direct effect (Gardner et al., 2001). To depict this process,
RBNP is incorporated into Eq. (16) as a generic activator
for cdh1-APC complexes (X15), which is implicit to inhibit
cyclin-CDK (X16) by Eq. (17). Variables and coefficients of
this cell cycle module are listed in Tables 3 and 4.

dX 15

dt
¼
ð1þ k32X 19Þð1� X 15Þ

k34 þ 1� X 15
�

k33X 17X 15X 16

k35 þ X 15
, (16)

dX 16

dt
¼ k39 � ðk36 þ k37X 15 þ k38X 18ÞX 16, (17)

dX 17

dt
¼ k40X 17 1�

X 17

k41

� �
, (18)

dX 18

dt
¼ k42 1�

X 17

k41

� �
� k43

k44

k44 þ k45
X 18, (19)

dX 19

dt
¼ k46 � ðk47 þ k46X 16ÞX 19. (20)
We note that throughout the simulation the cell cycle
time ranges between 2576.2 h and is thus in good
agreement with data reported in the literature such as in
Hegedus et al. (2000).

3.5. Cell phenotypes

3.5.1. Proliferation and migration

The signaling protein phospholipase Cg, PLCg, is known
to be involved in directional cell movement in response to
EGF (Mouneimne et al., 2004) and prognostic relevance of
PLCg expression in patients with glioblastoma has already
been reported by Mawrin et al. (2003). For our purposes
here particularly noteworthy, Dittmar et al. (2002)
demonstrated that PLCg is activated transiently in cancer
cells, that is to a greater extent during migration and more
gradually in the proliferating mode. Implementing this
concept, we adopt the threshold, sPLC, to decide if the cell
should undergo migration or not. Each cell is therefore
evaluated for its migratory potential (MP),

MP½X 11� ¼
dX 11

dt

� �
, (21)

where dX11/dt is the change in concentration of PLCg over
time. If MP is greater than the sPLC, the cell chooses to
migrate, otherwise it proliferates or remains quiescent. If
the cell decides to migrate, it searches for the best location
in its vicinity to move to. The candidate ‘best’ locations are
comprised of all the ‘Von Neumann’ neighborhood sites
(Athale et al., 2005) of this cell. Eq. (22) (Mansury and
Deisboeck, 2003) describes how the cell chooses this most
attractive location according to:

Tj ¼ c � Lj þ ð1� cÞ�j, (22)

where Tj stands for the perceived attractiveness of location
j, Lj represents the correct, non-erroneous evaluation of
location j that will be defined further below, where
�j�Nðm; s2Þ is an error term that is normally distributed
with mean m and variance s2. The parameter c is positive
between zero and one, 0pcp1, and represents the extent
of the search precision. For example, c ¼ 1 represents a
chemotactic search process operating with a 100 percent
precision, i.e. tumor cells always evaluate the permissibility
of a location without any processing error in the receptor
network. By contrast, when c ¼ 0, tumor cells perform a
random-walk motion. However, if MP is less than sPLC

and ppTGFa�EGFR_s is greater than sEGFR the new cell
will occupy one of its Von Neumann neighborhood sites
with highest Tj value (glucose concentration), otherwise it
will become quiescent. Based on the results presented in
Mansury and Deisboeck (2003) we chose here a search
precision of 0.7 as this had been shown to ensure maximum
spatio-temporal expansion of the virtual tumor system.

3.5.2. Quiescence and apoptosis

There are three possibilities that the cell enters the
reversible quiescent state: (1) the cell is unable to find an
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unoccupied location to migrate or proliferate into; or (2)
the migration potential (MP) is less than sPLC and
ppTGFa�EGFR_s is less than sEGFR; and finally, (3) the
glucose concentration around the cell ranges in between
16mmol/L and 8mmol/L. Note that if the on site glucose
concentration diminishes even further, i.e. below 8mmol/
L, the cell turns apoptotic (Freyer and Sutherland, 1986).

4. Results

Our code here is implemented in Java (Sun Microsystems,
Inc., USA) and employs an agent-based modeling toolkit
(http://cs.gmu.edu/�eclab/projects/mason/) that is combined
with in-house developed classes for representing molecules,
reactions and multi-receptors as a set of hierarchical objects.
Running the simulation 10 times with different random
normal distribution, sg, of glucose (Eq. (1b)), the algorithm
requires a total of 25h 46min of CPU time on a computer
with an IBM Bladecenter machine (dual-processor 32-bit
Xeons ranging from 2.8–3.2GHz w/2.5GB RAM) and
Gigabit Ethernet. Each node runs Linux with a 2.6 kernel
and Sun’s J2EE version 1.5.

Volumetric growth dynamics: We measure the tumor
system’s [total] volume by counting the number of the
lattice sites occupied by a tumor cell regardless of its
phenotype, hence lumping together both proliferative and
migratory driven expansion. Fig. 3 shows the increase in
tumor system volume over time for the 10 simulation runs.
The volume increase is not smooth, rather shows ‘‘jumps’’
or steps at distinct time points with a marked acceleration

of the growth rate at later stages.
Macroscopic behavior: Based on several of these stepping

points reported in Fig. 3, we display in Figs. 4(a)–(c) the
three-dimensional snapshots of the tumor at time points
t ¼ 50, 88 and 107. Note that blue color represents
proliferating cells, red represents migrating, green repre-
sents quiescent and grey represents dead tumor cells; one
‘time step’ is equal to 2.5 h.

http://cs.gmu.edu/~eclab/projects/mason/
http://cs.gmu.edu/~eclab/projects/mason/
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While at an early stage (Fig. 4(a)) the proliferate tumor
core appears to be completely surrounded by a cloud of
migratory cells, at a later time point, a more heterogeneous
picture emerges (Fig. 4(b)). Ultimately, a tip-population of
migratory cells can be found adjacent to the location of the
source in cube 4 (Fig. 4(c); compare also with Fig. 1).

Phenotypic behavior: Not surprisingly, due to the
comparably low molecular values of the cells’ triggering
network, at early time points overall tumor growth is
largely dominated by the proliferative phenotype (Fig. 5).
However, when molecular values increase sufficiently,
more cells switch (after t ¼ 41) to the migratory trait.
While the gains in the proliferative cell population overall
appear to correspond well to the increases seen in the
tumor system’s volume curve (Fig. 3, above), the oscilla-
tory behavior in these phenotypic sub-population dy-
namics suggests that after t ¼ 52, an intermediate,
migration-dominant expansion phase triggers a second
proliferation-dominant growth phase after t ¼ 81.

Molecular phenotype-switching profiles: We have also
investigated the percentage change in the components of
the EGFR network1 and thus the molecular profile that
leads to the phenotypic switch. We focused on time points,
t ¼ 52 and 81, where the population curves cross or nearly
cross, i.e., t ¼ 116 (compare with Fig. 5 (above)). While it is
evident from the ‘migration-to-proliferation’ switch that
the qualifying molecular profile remains very similar over
time (Fig. 6(d) and (e)) the situation becomes less
stationary in the ‘proliferation-to-migration’ events (Fig.
6(a)–(c)). For instance, while a percentage increase in PLCg

active phosphorylated Ca-bound (X11) seems to remain a
requirement for the switch towards migration throughout,
PLCg inactive Ca-bound (X10) appears to start playing a
more significant role at later stages of tumor expansion
(t ¼ 116).
1Note: cell cycle components are not listed as they are currently only

activated once a cell decides to proceed to proliferation.
5. Discussion and conclusions

For a variety of cancers, the epidermal growth factor
receptor, EGFR, has been shown to be critically involved
in directional motility, or chemotaxis, both in vitro and in
vivo (Bailly et al., 2000; Soon et al., 2005; Wyckoff et al.,
2000). However, there have been conflicting reports in the
literature regarding the prognostic significance of EGFR
gene amplification and over-expression in patients with
high-grade gliomas, particularly glioblastomas (for a recent
review, see e.g. Quan et al., 2005). It then becomes
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apparent that crucial biological information is being lost by
focusing on the gene level only, without consideration of
EGFR’s extensive protein downstream signaling cascade
and its influence on the cell’s phenotypic behavior,
respectively. Ideally, one would want to investigate the
dynamics of the subcellular gene-protein interaction net-

work without losing sight of the multicellular patterns and
ultimately clinical prognosis any such molecular events
may lead to. While it is difficult if not impossible, at least
for the moment, to realize this in a single experimental
setup, integrative computational modeling is advancing
towards a level that can provide valuable insights. Here, we
present such a novel 3D multi-scale agent-based model that
encompasses the macroscopic, microscopic and molecular
scale of a virtual brain tumor. Each in silico cell is equipped
with an EGFR gene-protein interaction module that
connects to a simplified cell cycle description. A tumor
cell’s phenotypic decision to either proliferate or migrate
(or to become quiescent) is determined by the dynamic
change in the values of the sub-cellular network’s
molecular components. These concentration values are
impacted by cell-cell signaling, such as through TGFa, and
by environmental cues, including nutrients such as glucose,
and hypoxia.

The results show that over time proliferative and
migratory cell populations not only oscillate, thus suggest-
ing a dynamic relationship, rather, this microscopic
behavior directly impacts also the spatio-temporal expan-
sion of the entire cancer system. That is, the secondary
increase in the proliferative cell population seen after time
step 81 (Fig. 5) is paralleled by a substantial acceleration of
the spatio-temporal expansion of the entire tumor system
(Fig. 3). Most intriguingly, however, the percentage change
in the concentration of the network’s molecular compo-
nents varies, in some instances considerably. A specific
example is inactive Ca-bound PLCg (X10), a network
component that appears to start playing a more significant
role for the transition to a migratory phenotype at later
stages of tumor expansion (Fig. 6(c)). In fact, the behavior
of the two phenotypic cell populations over time warrants a
more detailed inspection: while the first ‘crossover’ (Fig. 5),
i.e., the increase in the migratory cell population over the
proliferative population at time step 52, can be easily
explained by the gradual increase of active PLCg (X11),
yielding a higher migratory potential according to Eq. (21),
the second crossover at time step 81 is unexpected since the
concentration of active PLCg (X11) continues to build up.
One can argue that this is an emergent property of the
system since no a priori condition in the algorithm force
such behavior. Afterwards, the migratory cell fraction
rapidly re-approaches the proliferative population in time
step 116. We note here that since many new cells are
generated around time step 107 and since (in this first
iteration) a genetically stabile progeny inherits the mole-
cular values of the parental cells, these daughter cells are
equipped with an already high concentration of active
PLCl (X11) that predisposes them (through Eq. (21)) to a
rapid transition towards the migratory phenotype, much
like we saw in the earlier steps of tumor growth.
Aside from its technical merits, admittedly, our modeling

approach relies on several simplifications on the biology
side and thus inevitably harbors a number of drawbacks.
For instance, currently, (apart from the cell-cycle module)
the underlying EGFR network itself operates with only
two genes, EGFR and TGFa, and as such a variety of
related signaling pathways, such as the mitogen activated
protein kinase (MAPK) cascade (Schoeberl et al., 2002)
and others, deserve proper consideration in future itera-
tions of the model. Also, for the moment, the algorithm is
focused on a set of epigenetic changes and does not yet take
heterogeneity inducing genetic instability, a hallmark of
cancer progression, into account. As such, the current
setting does not yet allow for dynamic alterations of EGFR
gene and protein during tumorigenesis, such as through
amplification and over-expression as reported widely for
high grade gliomas (e.g. Ekstrand et al., 1991). Efforts are,
however, underway in our group to address some of these
shortcoming in future works.
Nonetheless, our results already confirm the impact post-

translational regulation can have on tumor cell behavior,
both on the single cell and multicellular level. Furthermore,
indicating that over time, differing molecular network
states may be able to trigger similar phenotypic behavior,
our findings question the value of single time point gene-
expression assessments for clinical predictions, thus corro-
borating recent reports from Rich et al. (2005) and Quan et
al. (2005) that find no prognostic value in EGFR gene
amplification. Rather, our results postulate dynamic

monitoring of a tumor’s gene-protein interaction level with
techniques such as phospho-proteomics (Blagoev et al.,
2004) that already have demonstrated their value as
outcome predictors for patients with brain tumors
(Schwartz et al., 2005). Absent any clinically available
non-invasive molecular imaging, monitoring of the spatio-
temporal dynamics in gene-protein interaction levels would
have to be achieved with specimen from consecutive
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biopsies, in parallel to assessing the tumor system’s overall
expansion through MR imaging time series. Intriguingly, a
recent clinical study on such ‘image-guided proteomics’
seems to support our findings at least in part as these
authors report distinctively different protein expression
profiles in the glioblastomas’ contrast-enhanc rim zone
(which is arguably where the ‘proliferation-to-migration’
(Fig. 6(a)–(c)) transition occurs) despite similar histological
findings (Hobbs et al., 2003).
In conclusion, this novel three-dimensional computa-

tional model is an important step in simulating tumor
growth dynamics over multiple scales of interest. While
extensions will be necessary to account in greater detail for
the complexity of the biology involved, we believe that if
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properly combined with experimental data, advanced in

silico platforms such as this one will evolve into powerful
integrative research platforms that improve our under-
standing of tumorigenesis.
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