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Python Basics



Python Basics

• Object oriented language • Interpreted language

• Everything is an object

• References are the main 
way of passing parameters

• Duck typing



Python Basics

• Object oriented language

• Some functional capabilities
• Lambda expression

• Lists by comprehension

• Partial evaluation not 
directly supported



Python Basics

• Object oriented language

• Some functional capabilities

• Everything can be defined 
or redefined in execution 
time



Python basic Datatypes

• Literals (i.e. integers, floats, complex and charactes)

• Tuples: fixed combinations of objects t=(‘a’,2)

• Lists: resizable combinations of objects t=[‘a’,2]

• Dictionaries: key/value pairs t[‘a’]=2

• Sets: non-iterable containers with a fast pertenence 
operation t={‘a’,2}

• Functions

• Classes

• Modules



• array datatype

• Multidimensional array

• Operations are done in an element by element basis

• matrix datatype

• Bidimensional array of elements

• matrix semantics 

Numpy basic Datatypes



Numpy: slicing

[Jones,Oliphant]

>>> a[0,3:5]
array([3,4])

>>> a[4:,4:]
array([[44, 45],       
       [54, 55]])
       
>>> a[:,2]
array([2,22,52])

>>> a[2::2,::2]
array([[20,22,24]
       [40,42,44]])

Slicing does not create 
copies of the array’s 
contents



Numpy: fancy indexing

a

y

INDEXING BY POSITION INDEXING WITH BOOLEANS
>>> a = arange(0,80,10) >>> mask = array([0,1,1,0,0,1,0,0],

...              dtype=bool)

# fancy indexing # fancy indexing
>>> y = a[[1, 2, -3]] >>> y = a[mask]
>>> print y >>> print y
[10 20 50] [10,20,50]

# using take # using compress
>>> y = take(a,[1,2,-3]) >>> y = compress(mask, a)
>>> print y >>> print y
[10 20 50] [10,20,50]

[Jones,Oliphant]



Numpy: fancier indexing

>>> a[(0,1,2,3,4),(1,2,3,4,5)]
array([ 1, 12, 23, 34, 45])

>>> a[3:,[0, 2, 5]]
array([[30, 32, 35],       
       [40, 42, 45]])
       [50, 52, 55]])

>>> mask = array([1,0,1,0,0,1],
                 dtype=bool) 
>>> a[mask,2]
array([2,22,52])

Unlike slicing, fancy indexing 
creates copies instead of 
views into original arrays.

[Jones,Oliphant]



Numpy broadcasting

stretch stretch

stretch
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4x3 4x3
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[Oliphant]

Semantic of binary operations between arrays
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may be tested in the future) we refer to these parameters
collectively as Dparam. Specifically for the mean closest point
distance measure, the method for symmetrization of distances
(minimum or mean) is stored in Dparam. In addition, whether
or not midsagittal reflection was used in atlas generation is
stored in Dparam.

Next, the distance measures are converted to affinity mea-
sures suitable for spectral clustering. Each distance (dij) is
converted to an affinity measure (Wij) via a Gaussian kernel

Wij = e−d2
ij/σ2

, (4)

a method that is frequently employed in the clustering litera-
ture [50], [51], [52]. Since the distances are symmetric, this
conversion produces a symmetric affinity matrix for clustering.

The role of σ in (4) is to define the size scale of the
problem by setting the distance over which fibers can be
considered similar. We standardly choose σ based on our
clustering experience to be 30mm with bilateral matching (and
minimum symmetrization), and 60mm in standard clustering
(with mean symmetrization). For smaller clustering problems
(not the whole brain), values as low as 10mm can give
better clusterings. Note that a larger value of σ incorporates
more information from anatomically neighboring structures.
A benefit of this affinity measure is that the clustering is
insensitive to small registration errors and to small anatomical
differences across subjects due to the capture range of the
mean closest point distance and the Gaussian kernel.

The entire pairwise fiber affinity matrix W contains affini-
ties for all pairs of fibers across all brains. Because W is too
large to compute, we use an approximation called the Nystrom
method [44]. Instead of calculating all pairwise affinities, we
randomly choose a subset of the fiber trajectories (sampling an
equal number from each subject), and then compute affinities
from all fibers to just that subset. This produces two affinity
matrices, one that holds the subset’s pairwise affinities (A),
and another (B) that holds affinities of the rest of the fibers
to the subset. The layout of the affinity matrix for group
clustering is illustrated in Figure 7. Note that the A and B
matrices contain information from all subjects together.
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C

Fig. 7. Diagram of the parts of the multisubject fiber affinity matrix W,
for an example five-subject clustering problem. The regions within A and B
represent individual subjects. C is the part of the matrix that does not need
to be calculated when using the Nystrom method.

4) Fiber Spectral Embedding: Next a spectral embedding
of all fibers is created based on the fiber affinity values. In
the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix

W = D− 1
2 WD− 1

2 . (5)

In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
A and B matrices, to give A and B, are estimated using the
following formula [44]:

d̂ =
[

ar + br

bc + BT A−1br

]
(6)

where ar and br are column vectors containing the row sums
of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:

Wij =
Wij√
d̂id̂j

(7)

Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)

Get the most significative 
eigenvectors of a normalized 

matrix W, using only the 
submatrices A and B

•Subsampling W to get A
•Normalizing of the partial parts
•Eigenvalue decomposition of A
•Estimation of the Eigenvectors of W
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each element of W by the square root of the row and column
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sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:
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Next the eigenvectors of W (the quantities needed for
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eigenvectors U and diagonal eigenvalue matrix Λ of the
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eigenvectors Ū are then estimated via projection of normalized
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In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
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showing that the rows of both matrices, A and BT , are
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where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
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sum approximately to 1, the vector of all constant values is an
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discard this uninformative vector the embedding begins with
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estimated via the following formula [44]
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spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
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sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
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Subsampling D to get A and B
#W is the initial matrix
#ratio is the relative size of A with respect to W

import numpy
from numpy import random
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a point, and similar fibers are generally embedded near each
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Full example:
NCuts Nÿstrom

Subsampling D to get A and B
#W is the initial matrix
#ratio is the relative size of A with respect to W

import numpy
from numpy import random

shuffled_indexes = numpy.arange( W.shape[0], dtype=int )
random.shuffle( shuffled_indexes )
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Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
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the second eigenvector as indicated in equation 9.)



Full example:
NCuts Nÿstrom

Subsampling D to get A and B
#W is the initial matrix
#ratio is the relative size of A with respect to W

import numpy
from numpy import random

shuffled_indexes = numpy.arange( W.shape[0], dtype=int )
random.shuffle( shuffled_indexes )

Na = int(numpy.round( elementQty*ratio ))
Nb = elementQty-Na
a_indexes = shuffled_indexes[:Na]
b_indexes = shuffled_indexes[Na:]
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may be tested in the future) we refer to these parameters
collectively as Dparam. Specifically for the mean closest point
distance measure, the method for symmetrization of distances
(minimum or mean) is stored in Dparam. In addition, whether
or not midsagittal reflection was used in atlas generation is
stored in Dparam.

Next, the distance measures are converted to affinity mea-
sures suitable for spectral clustering. Each distance (dij) is
converted to an affinity measure (Wij) via a Gaussian kernel

Wij = e−d2
ij/σ2

, (4)

a method that is frequently employed in the clustering litera-
ture [50], [51], [52]. Since the distances are symmetric, this
conversion produces a symmetric affinity matrix for clustering.

The role of σ in (4) is to define the size scale of the
problem by setting the distance over which fibers can be
considered similar. We standardly choose σ based on our
clustering experience to be 30mm with bilateral matching (and
minimum symmetrization), and 60mm in standard clustering
(with mean symmetrization). For smaller clustering problems
(not the whole brain), values as low as 10mm can give
better clusterings. Note that a larger value of σ incorporates
more information from anatomically neighboring structures.
A benefit of this affinity measure is that the clustering is
insensitive to small registration errors and to small anatomical
differences across subjects due to the capture range of the
mean closest point distance and the Gaussian kernel.

The entire pairwise fiber affinity matrix W contains affini-
ties for all pairs of fibers across all brains. Because W is too
large to compute, we use an approximation called the Nystrom
method [44]. Instead of calculating all pairwise affinities, we
randomly choose a subset of the fiber trajectories (sampling an
equal number from each subject), and then compute affinities
from all fibers to just that subset. This produces two affinity
matrices, one that holds the subset’s pairwise affinities (A),
and another (B) that holds affinities of the rest of the fibers
to the subset. The layout of the affinity matrix for group
clustering is illustrated in Figure 7. Note that the A and B
matrices contain information from all subjects together.
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Fig. 7. Diagram of the parts of the multisubject fiber affinity matrix W,
for an example five-subject clustering problem. The regions within A and B
represent individual subjects. C is the part of the matrix that does not need
to be calculated when using the Nystrom method.

4) Fiber Spectral Embedding: Next a spectral embedding
of all fibers is created based on the fiber affinity values. In
the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix

W = D− 1
2 WD− 1

2 . (5)

In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
A and B matrices, to give A and B, are estimated using the
following formula [44]:

d̂ =
[

ar + br

bc + BT A−1br

]
(6)

where ar and br are column vectors containing the row sums
of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:

Wij =
Wij√
d̂id̂j

(7)

Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)



Full example:
NCuts Nÿstrom

Subsampling D to get A and B
#W is the initial matrix
#ratio is the relative size of A with respect to W

import numpy
from numpy import random

shuffled_indexes = numpy.arange( W.shape[0], dtype=int )
random.shuffle( shuffled_indexes )

Na = int(numpy.round( elementQty*ratio ))
Nb = elementQty-Na
a_indexes = shuffled_indexes[:Na]
b_indexes = shuffled_indexes[Na:]
  
A = numpy.asmatrix(D[a_indexes,:][:,a_indexes])
B = numpy.asmatrix(D[a_indexes,:][:,b_indexes])
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may be tested in the future) we refer to these parameters
collectively as Dparam. Specifically for the mean closest point
distance measure, the method for symmetrization of distances
(minimum or mean) is stored in Dparam. In addition, whether
or not midsagittal reflection was used in atlas generation is
stored in Dparam.

Next, the distance measures are converted to affinity mea-
sures suitable for spectral clustering. Each distance (dij) is
converted to an affinity measure (Wij) via a Gaussian kernel

Wij = e−d2
ij/σ2

, (4)

a method that is frequently employed in the clustering litera-
ture [50], [51], [52]. Since the distances are symmetric, this
conversion produces a symmetric affinity matrix for clustering.

The role of σ in (4) is to define the size scale of the
problem by setting the distance over which fibers can be
considered similar. We standardly choose σ based on our
clustering experience to be 30mm with bilateral matching (and
minimum symmetrization), and 60mm in standard clustering
(with mean symmetrization). For smaller clustering problems
(not the whole brain), values as low as 10mm can give
better clusterings. Note that a larger value of σ incorporates
more information from anatomically neighboring structures.
A benefit of this affinity measure is that the clustering is
insensitive to small registration errors and to small anatomical
differences across subjects due to the capture range of the
mean closest point distance and the Gaussian kernel.

The entire pairwise fiber affinity matrix W contains affini-
ties for all pairs of fibers across all brains. Because W is too
large to compute, we use an approximation called the Nystrom
method [44]. Instead of calculating all pairwise affinities, we
randomly choose a subset of the fiber trajectories (sampling an
equal number from each subject), and then compute affinities
from all fibers to just that subset. This produces two affinity
matrices, one that holds the subset’s pairwise affinities (A),
and another (B) that holds affinities of the rest of the fibers
to the subset. The layout of the affinity matrix for group
clustering is illustrated in Figure 7. Note that the A and B
matrices contain information from all subjects together.

B

A B

T

C

Fig. 7. Diagram of the parts of the multisubject fiber affinity matrix W,
for an example five-subject clustering problem. The regions within A and B
represent individual subjects. C is the part of the matrix that does not need
to be calculated when using the Nystrom method.

4) Fiber Spectral Embedding: Next a spectral embedding
of all fibers is created based on the fiber affinity values. In
the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix

W = D− 1
2 WD− 1

2 . (5)

In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
A and B matrices, to give A and B, are estimated using the
following formula [44]:

d̂ =
[

ar + br

bc + BT A−1br

]
(6)

where ar and br are column vectors containing the row sums
of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:

Wij =
Wij√
d̂id̂j

(7)

Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)



Full example:
NCuts Nÿstrom

Normalizing A and B
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may be tested in the future) we refer to these parameters
collectively as Dparam. Specifically for the mean closest point
distance measure, the method for symmetrization of distances
(minimum or mean) is stored in Dparam. In addition, whether
or not midsagittal reflection was used in atlas generation is
stored in Dparam.

Next, the distance measures are converted to affinity mea-
sures suitable for spectral clustering. Each distance (dij) is
converted to an affinity measure (Wij) via a Gaussian kernel

Wij = e−d2
ij/σ2

, (4)

a method that is frequently employed in the clustering litera-
ture [50], [51], [52]. Since the distances are symmetric, this
conversion produces a symmetric affinity matrix for clustering.

The role of σ in (4) is to define the size scale of the
problem by setting the distance over which fibers can be
considered similar. We standardly choose σ based on our
clustering experience to be 30mm with bilateral matching (and
minimum symmetrization), and 60mm in standard clustering
(with mean symmetrization). For smaller clustering problems
(not the whole brain), values as low as 10mm can give
better clusterings. Note that a larger value of σ incorporates
more information from anatomically neighboring structures.
A benefit of this affinity measure is that the clustering is
insensitive to small registration errors and to small anatomical
differences across subjects due to the capture range of the
mean closest point distance and the Gaussian kernel.

The entire pairwise fiber affinity matrix W contains affini-
ties for all pairs of fibers across all brains. Because W is too
large to compute, we use an approximation called the Nystrom
method [44]. Instead of calculating all pairwise affinities, we
randomly choose a subset of the fiber trajectories (sampling an
equal number from each subject), and then compute affinities
from all fibers to just that subset. This produces two affinity
matrices, one that holds the subset’s pairwise affinities (A),
and another (B) that holds affinities of the rest of the fibers
to the subset. The layout of the affinity matrix for group
clustering is illustrated in Figure 7. Note that the A and B
matrices contain information from all subjects together.
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Fig. 7. Diagram of the parts of the multisubject fiber affinity matrix W,
for an example five-subject clustering problem. The regions within A and B
represent individual subjects. C is the part of the matrix that does not need
to be calculated when using the Nystrom method.

4) Fiber Spectral Embedding: Next a spectral embedding
of all fibers is created based on the fiber affinity values. In
the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix

W = D− 1
2 WD− 1

2 . (5)

In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
A and B matrices, to give A and B, are estimated using the
following formula [44]:

d̂ =
[

ar + br

bc + BT A−1br

]
(6)

where ar and br are column vectors containing the row sums
of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:

Wij =
Wij√
d̂id̂j

(7)

Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)
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may be tested in the future) we refer to these parameters
collectively as Dparam. Specifically for the mean closest point
distance measure, the method for symmetrization of distances
(minimum or mean) is stored in Dparam. In addition, whether
or not midsagittal reflection was used in atlas generation is
stored in Dparam.

Next, the distance measures are converted to affinity mea-
sures suitable for spectral clustering. Each distance (dij) is
converted to an affinity measure (Wij) via a Gaussian kernel

Wij = e−d2
ij/σ2

, (4)

a method that is frequently employed in the clustering litera-
ture [50], [51], [52]. Since the distances are symmetric, this
conversion produces a symmetric affinity matrix for clustering.

The role of σ in (4) is to define the size scale of the
problem by setting the distance over which fibers can be
considered similar. We standardly choose σ based on our
clustering experience to be 30mm with bilateral matching (and
minimum symmetrization), and 60mm in standard clustering
(with mean symmetrization). For smaller clustering problems
(not the whole brain), values as low as 10mm can give
better clusterings. Note that a larger value of σ incorporates
more information from anatomically neighboring structures.
A benefit of this affinity measure is that the clustering is
insensitive to small registration errors and to small anatomical
differences across subjects due to the capture range of the
mean closest point distance and the Gaussian kernel.

The entire pairwise fiber affinity matrix W contains affini-
ties for all pairs of fibers across all brains. Because W is too
large to compute, we use an approximation called the Nystrom
method [44]. Instead of calculating all pairwise affinities, we
randomly choose a subset of the fiber trajectories (sampling an
equal number from each subject), and then compute affinities
from all fibers to just that subset. This produces two affinity
matrices, one that holds the subset’s pairwise affinities (A),
and another (B) that holds affinities of the rest of the fibers
to the subset. The layout of the affinity matrix for group
clustering is illustrated in Figure 7. Note that the A and B
matrices contain information from all subjects together.
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Fig. 7. Diagram of the parts of the multisubject fiber affinity matrix W,
for an example five-subject clustering problem. The regions within A and B
represent individual subjects. C is the part of the matrix that does not need
to be calculated when using the Nystrom method.

4) Fiber Spectral Embedding: Next a spectral embedding
of all fibers is created based on the fiber affinity values. In
the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix

W = D− 1
2 WD− 1

2 . (5)

In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
A and B matrices, to give A and B, are estimated using the
following formula [44]:

d̂ =
[

ar + br

bc + BT A−1br

]
(6)

where ar and br are column vectors containing the row sums
of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:

Wij =
Wij√
d̂id̂j

(7)

Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)
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may be tested in the future) we refer to these parameters
collectively as Dparam. Specifically for the mean closest point
distance measure, the method for symmetrization of distances
(minimum or mean) is stored in Dparam. In addition, whether
or not midsagittal reflection was used in atlas generation is
stored in Dparam.

Next, the distance measures are converted to affinity mea-
sures suitable for spectral clustering. Each distance (dij) is
converted to an affinity measure (Wij) via a Gaussian kernel

Wij = e−d2
ij/σ2

, (4)

a method that is frequently employed in the clustering litera-
ture [50], [51], [52]. Since the distances are symmetric, this
conversion produces a symmetric affinity matrix for clustering.

The role of σ in (4) is to define the size scale of the
problem by setting the distance over which fibers can be
considered similar. We standardly choose σ based on our
clustering experience to be 30mm with bilateral matching (and
minimum symmetrization), and 60mm in standard clustering
(with mean symmetrization). For smaller clustering problems
(not the whole brain), values as low as 10mm can give
better clusterings. Note that a larger value of σ incorporates
more information from anatomically neighboring structures.
A benefit of this affinity measure is that the clustering is
insensitive to small registration errors and to small anatomical
differences across subjects due to the capture range of the
mean closest point distance and the Gaussian kernel.

The entire pairwise fiber affinity matrix W contains affini-
ties for all pairs of fibers across all brains. Because W is too
large to compute, we use an approximation called the Nystrom
method [44]. Instead of calculating all pairwise affinities, we
randomly choose a subset of the fiber trajectories (sampling an
equal number from each subject), and then compute affinities
from all fibers to just that subset. This produces two affinity
matrices, one that holds the subset’s pairwise affinities (A),
and another (B) that holds affinities of the rest of the fibers
to the subset. The layout of the affinity matrix for group
clustering is illustrated in Figure 7. Note that the A and B
matrices contain information from all subjects together.
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Fig. 7. Diagram of the parts of the multisubject fiber affinity matrix W,
for an example five-subject clustering problem. The regions within A and B
represent individual subjects. C is the part of the matrix that does not need
to be calculated when using the Nystrom method.

4) Fiber Spectral Embedding: Next a spectral embedding
of all fibers is created based on the fiber affinity values. In
the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix

W = D− 1
2 WD− 1

2 . (5)

In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
A and B matrices, to give A and B, are estimated using the
following formula [44]:

d̂ =
[

ar + br

bc + BT A−1br

]
(6)

where ar and br are column vectors containing the row sums
of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:

Wij =
Wij√
d̂id̂j

(7)

Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)



Full example:
NCuts Nÿstrom

Normalizing A and B
 a_r = A.sum(1)
 b_r = B.sum(1)
 b_c = B.T.sum(1)
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may be tested in the future) we refer to these parameters
collectively as Dparam. Specifically for the mean closest point
distance measure, the method for symmetrization of distances
(minimum or mean) is stored in Dparam. In addition, whether
or not midsagittal reflection was used in atlas generation is
stored in Dparam.

Next, the distance measures are converted to affinity mea-
sures suitable for spectral clustering. Each distance (dij) is
converted to an affinity measure (Wij) via a Gaussian kernel

Wij = e−d2
ij/σ2

, (4)

a method that is frequently employed in the clustering litera-
ture [50], [51], [52]. Since the distances are symmetric, this
conversion produces a symmetric affinity matrix for clustering.

The role of σ in (4) is to define the size scale of the
problem by setting the distance over which fibers can be
considered similar. We standardly choose σ based on our
clustering experience to be 30mm with bilateral matching (and
minimum symmetrization), and 60mm in standard clustering
(with mean symmetrization). For smaller clustering problems
(not the whole brain), values as low as 10mm can give
better clusterings. Note that a larger value of σ incorporates
more information from anatomically neighboring structures.
A benefit of this affinity measure is that the clustering is
insensitive to small registration errors and to small anatomical
differences across subjects due to the capture range of the
mean closest point distance and the Gaussian kernel.

The entire pairwise fiber affinity matrix W contains affini-
ties for all pairs of fibers across all brains. Because W is too
large to compute, we use an approximation called the Nystrom
method [44]. Instead of calculating all pairwise affinities, we
randomly choose a subset of the fiber trajectories (sampling an
equal number from each subject), and then compute affinities
from all fibers to just that subset. This produces two affinity
matrices, one that holds the subset’s pairwise affinities (A),
and another (B) that holds affinities of the rest of the fibers
to the subset. The layout of the affinity matrix for group
clustering is illustrated in Figure 7. Note that the A and B
matrices contain information from all subjects together.
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Fig. 7. Diagram of the parts of the multisubject fiber affinity matrix W,
for an example five-subject clustering problem. The regions within A and B
represent individual subjects. C is the part of the matrix that does not need
to be calculated when using the Nystrom method.

4) Fiber Spectral Embedding: Next a spectral embedding
of all fibers is created based on the fiber affinity values. In
the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix

W = D− 1
2 WD− 1

2 . (5)

In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
A and B matrices, to give A and B, are estimated using the
following formula [44]:

d̂ =
[

ar + br

bc + BT A−1br

]
(6)

where ar and br are column vectors containing the row sums
of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:

Wij =
Wij√
d̂id̂j

(7)

Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)
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or not midsagittal reflection was used in atlas generation is
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Next, the distance measures are converted to affinity mea-
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converted to an affinity measure (Wij) via a Gaussian kernel
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a method that is frequently employed in the clustering litera-
ture [50], [51], [52]. Since the distances are symmetric, this
conversion produces a symmetric affinity matrix for clustering.

The role of σ in (4) is to define the size scale of the
problem by setting the distance over which fibers can be
considered similar. We standardly choose σ based on our
clustering experience to be 30mm with bilateral matching (and
minimum symmetrization), and 60mm in standard clustering
(with mean symmetrization). For smaller clustering problems
(not the whole brain), values as low as 10mm can give
better clusterings. Note that a larger value of σ incorporates
more information from anatomically neighboring structures.
A benefit of this affinity measure is that the clustering is
insensitive to small registration errors and to small anatomical
differences across subjects due to the capture range of the
mean closest point distance and the Gaussian kernel.

The entire pairwise fiber affinity matrix W contains affini-
ties for all pairs of fibers across all brains. Because W is too
large to compute, we use an approximation called the Nystrom
method [44]. Instead of calculating all pairwise affinities, we
randomly choose a subset of the fiber trajectories (sampling an
equal number from each subject), and then compute affinities
from all fibers to just that subset. This produces two affinity
matrices, one that holds the subset’s pairwise affinities (A),
and another (B) that holds affinities of the rest of the fibers
to the subset. The layout of the affinity matrix for group
clustering is illustrated in Figure 7. Note that the A and B
matrices contain information from all subjects together.
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nearby points in general correspond to similar fiber trajecto-
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are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix
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In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
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Next the eigenvectors of W (the quantities needed for
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eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
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In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)
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the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix
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In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
A and B matrices, to give A and B, are estimated using the
following formula [44]:

d̂ =
[

ar + br

bc + BT A−1br

]
(6)

where ar and br are column vectors containing the row sums
of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:

Wij =
Wij√
d̂id̂j

(7)

Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)



Full example:
NCuts Nÿstrom

Normalizing A and B
 a_r = A.sum(1)
 b_r = B.sum(1)
 b_c = B.T.sum(1)

 d = numpy.vstack((\
      a_r + b_r,\
      b_c + (B.T * linalg.inv(A)) * b_r\
      ))

d_inv_sqr = 1./numpy.sqrt(d)
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randomly choose a subset of the fiber trajectories (sampling an
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from all fibers to just that subset. This produces two affinity
matrices, one that holds the subset’s pairwise affinities (A),
and another (B) that holds affinities of the rest of the fibers
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clustering is illustrated in Figure 7. Note that the A and B
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4) Fiber Spectral Embedding: Next a spectral embedding
of all fibers is created based on the fiber affinity values. In
the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix

W = D− 1
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In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
A and B matrices, to give A and B, are estimated using the
following formula [44]:

d̂ =
[

ar + br

bc + BT A−1br

]
(6)

where ar and br are column vectors containing the row sums
of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:

Wij =
Wij√
d̂id̂j

(7)

Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)
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4) Fiber Spectral Embedding: Next a spectral embedding
of all fibers is created based on the fiber affinity values. In
the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
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In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.
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A and B matrices, to give A and B, are estimated using the
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of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:
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Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
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U
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]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)
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In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
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normalized matrix A are first calculated, and the population
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In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
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each fiber using the rows of the eigenvector matrix, giving

Ej =
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(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
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Full example:
NCuts Nÿstrom

Normalizing A and B
 a_r = A.sum(1)
 b_r = B.sum(1)
 b_c = B.T.sum(1)

 d = numpy.vstack((\
      a_r + b_r,\
      b_c + (B.T * linalg.inv(A)) * b_r\
      ))

d_inv_sqr = 1./numpy.sqrt(d)
 
An = \
 numpy.multiply(\
    numpy.multiply( d_inv_sqrt[:Na], A ),\
 d_inv_sqrt[:Na].T)
Bn = \ 
   numpy.multiply(\
      numpy.multiply( d_inv_sqrt[Na:].T, B ),\
   d_inv_sqrt[:Na])
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may be tested in the future) we refer to these parameters
collectively as Dparam. Specifically for the mean closest point
distance measure, the method for symmetrization of distances
(minimum or mean) is stored in Dparam. In addition, whether
or not midsagittal reflection was used in atlas generation is
stored in Dparam.

Next, the distance measures are converted to affinity mea-
sures suitable for spectral clustering. Each distance (dij) is
converted to an affinity measure (Wij) via a Gaussian kernel

Wij = e−d2
ij/σ2

, (4)

a method that is frequently employed in the clustering litera-
ture [50], [51], [52]. Since the distances are symmetric, this
conversion produces a symmetric affinity matrix for clustering.

The role of σ in (4) is to define the size scale of the
problem by setting the distance over which fibers can be
considered similar. We standardly choose σ based on our
clustering experience to be 30mm with bilateral matching (and
minimum symmetrization), and 60mm in standard clustering
(with mean symmetrization). For smaller clustering problems
(not the whole brain), values as low as 10mm can give
better clusterings. Note that a larger value of σ incorporates
more information from anatomically neighboring structures.
A benefit of this affinity measure is that the clustering is
insensitive to small registration errors and to small anatomical
differences across subjects due to the capture range of the
mean closest point distance and the Gaussian kernel.

The entire pairwise fiber affinity matrix W contains affini-
ties for all pairs of fibers across all brains. Because W is too
large to compute, we use an approximation called the Nystrom
method [44]. Instead of calculating all pairwise affinities, we
randomly choose a subset of the fiber trajectories (sampling an
equal number from each subject), and then compute affinities
from all fibers to just that subset. This produces two affinity
matrices, one that holds the subset’s pairwise affinities (A),
and another (B) that holds affinities of the rest of the fibers
to the subset. The layout of the affinity matrix for group
clustering is illustrated in Figure 7. Note that the A and B
matrices contain information from all subjects together.
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Fig. 7. Diagram of the parts of the multisubject fiber affinity matrix W,
for an example five-subject clustering problem. The regions within A and B
represent individual subjects. C is the part of the matrix that does not need
to be calculated when using the Nystrom method.

4) Fiber Spectral Embedding: Next a spectral embedding
of all fibers is created based on the fiber affinity values. In
the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix

W = D− 1
2 WD− 1

2 . (5)

In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
A and B matrices, to give A and B, are estimated using the
following formula [44]:

d̂ =
[

ar + br

bc + BT A−1br

]
(6)

where ar and br are column vectors containing the row sums
of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:

Wij =
Wij√
d̂id̂j

(7)

Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)
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In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
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Finally, spectral embedding vectors E are calculated for
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spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
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[Oliphant]

d_inv_sqrt = numpy.asarray(d_inv_sqrt)
An = d_inv_sqrt[:Na]*numpy.asarray(A)*d_inv_sqrt[:Na].T
#Warning here the d_inv_sqr and A are arrays not matrices

Equivalent syntax for the normalization



Full example:
NCuts Nÿstrom

Eigenvalue decomposition of A

Delta,U = linalg.eig(An)

Delta_inv = numpy.asmatrix( numpy.diag(1./Delta) )

Ubar = numpy.vstack((\
      U,\
      Bn.T*U*Delta_inv\
      ))

return Delta, Ubar[ numpy.argsort( shuffled_indexes ),:]
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may be tested in the future) we refer to these parameters
collectively as Dparam. Specifically for the mean closest point
distance measure, the method for symmetrization of distances
(minimum or mean) is stored in Dparam. In addition, whether
or not midsagittal reflection was used in atlas generation is
stored in Dparam.

Next, the distance measures are converted to affinity mea-
sures suitable for spectral clustering. Each distance (dij) is
converted to an affinity measure (Wij) via a Gaussian kernel

Wij = e−d2
ij/σ2

, (4)

a method that is frequently employed in the clustering litera-
ture [50], [51], [52]. Since the distances are symmetric, this
conversion produces a symmetric affinity matrix for clustering.

The role of σ in (4) is to define the size scale of the
problem by setting the distance over which fibers can be
considered similar. We standardly choose σ based on our
clustering experience to be 30mm with bilateral matching (and
minimum symmetrization), and 60mm in standard clustering
(with mean symmetrization). For smaller clustering problems
(not the whole brain), values as low as 10mm can give
better clusterings. Note that a larger value of σ incorporates
more information from anatomically neighboring structures.
A benefit of this affinity measure is that the clustering is
insensitive to small registration errors and to small anatomical
differences across subjects due to the capture range of the
mean closest point distance and the Gaussian kernel.

The entire pairwise fiber affinity matrix W contains affini-
ties for all pairs of fibers across all brains. Because W is too
large to compute, we use an approximation called the Nystrom
method [44]. Instead of calculating all pairwise affinities, we
randomly choose a subset of the fiber trajectories (sampling an
equal number from each subject), and then compute affinities
from all fibers to just that subset. This produces two affinity
matrices, one that holds the subset’s pairwise affinities (A),
and another (B) that holds affinities of the rest of the fibers
to the subset. The layout of the affinity matrix for group
clustering is illustrated in Figure 7. Note that the A and B
matrices contain information from all subjects together.
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Fig. 7. Diagram of the parts of the multisubject fiber affinity matrix W,
for an example five-subject clustering problem. The regions within A and B
represent individual subjects. C is the part of the matrix that does not need
to be calculated when using the Nystrom method.

4) Fiber Spectral Embedding: Next a spectral embedding
of all fibers is created based on the fiber affinity values. In
the embedding space each fiber is represented as a point, and
nearby points in general correspond to similar fiber trajecto-
ries. The advantage of this space is that similarity relationships

are represented spatially, so that clusters can be more easily
found. The embedding is calculated using the eigenvectors of
the multisubject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate
the leading eigenvectors of the normalized affinity matrix

W = D− 1
2 WD− 1

2 . (5)

In the above equation, W is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using D, a diagonal matrix containing the
row sums of W. The effect of this normalization is to divide
each element of W by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
A and B matrices, to give A and B, are estimated using the
following formula [44]:

d̂ =
[

ar + br

bc + BT A−1br

]
(6)

where ar and br are column vectors containing the row sums
of A and B, and bc is a column vector containing the row
sums of BT . Once d̂ is computed, the known elements of W
(the values in A and B) are normalized as in equation 5:

Wij =
Wij√
d̂id̂j

(7)

Next the eigenvectors of W (the quantities needed for
embedding) are estimated using the eigenvectors of A. The
eigenvectors U and diagonal eigenvalue matrix Λ of the
normalized matrix A are first calculated, and the population
eigenvectors Ū are then estimated via projection of normalized
affinity values in B onto the eigenvector basis from A. Ū is
estimated via the following formula [44]

Ū =
[

U
BT UΛ−1

]
. (8)

In equation 8 the ordering of the rows of Ū is such that
those corresponding to rows of A are first, followed by those
corresponding to rows from BT . (Note U = AUΛ−1 =
AT UΛ−1 has the same form as BT UΛ−1 in equation 8,
showing that the rows of both matrices, A and BT , are
projected onto the orthogonal basis UΛ−1. This basis defines
the embedding space.)

Finally, spectral embedding vectors E are calculated for
each fiber using the rows of the eigenvector matrix, giving

Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n) (9)

where the eigenvector ordering is in descending order accord-
ing to the eigenvalue. This generates a coordinate system, the
spectral embedding space, where each fiber is represented as
a point, and similar fibers are generally embedded near each
other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
eigenvector but does not provide information for clustering. To
discard this uninformative vector the embedding begins with
the second eigenvector as indicated in equation 9.)
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spectral embedding space, where each fiber is represented as
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other. (Note that because the rows of the normalized W matrix
sum approximately to 1, the vector of all constant values is an
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