Painless Application Development with 3D Slicer and Python Basic Python and Index tricks

Demian Wassermann LMI 09/2008

- Object oriented language
- Interpreted language
- Everything is an object
- References are the main way of passing parameters
- Duck typing

- Object oriented language
- Some functional capabilities
- Lambda expression
- Lists by comprehension
- Partial evaluation not directly supported

- Object oriented language
- Some functional capabilities
- Everything can be defined or redefined in execution time

Python basic Datatypes

- Literals (i.e. integers, floats, complex and charactes)
- Tuples: fixed combinations of objects t=('a', 2)
- Lists: resizable combinations of objects t=['a',2]
- Dictionaries: key/value pairs t ['a']=2
- Sets: non-iterable containers with a fast pertenence operation t={ 'a', 2}
- Functions
- Classes
- Modules

Numpy basic Datatypes

- array datatype
 - Multidimensional array
 - Operations are done in an element by element basis
- matrix datatype
 - Bidimensional array of elements
 - matrix semantics

Numpy: slicing

>>> a[0,3:5] array([3,4])

>>> a[4:,4:]
array([[44, 45],
 [54, 55]])

>>> a[:,2] array([2,22,52])

>>> a[2::2,::2]
array([[20,22,24]
 [40,42,44]])

		/	/	/		/
0	1	2	3	4	5	
10	11	12	13	14	15	
20	21	22	23	24	25	
30	31	32	33	34	35	
40	41	42	43	44	45	/
50	51	52	53	54	55	

i)

Slicing does not create copies of the array's contents

[Jones,Oliphant]

Numpy: fancy indexing

INDEXING BY POSITION	INDEXING WITH BOOLEANS			
>>> a = arange(0,80,10)	>>> mask = array($[0,1,1,0,0,1,0,0]$,			
	dtype=bool)			
<pre># fancy indexing</pre>	<pre># fancy indexing</pre>			
>>> $y = a[[1, 2, -3]]$	>>> y = a[mask]			
>>> print y	>>> print y			
[10 20 50]	[10,20,50]			
<pre># using take</pre>	<pre># using compress</pre>			
>>> y = take(a, $[1, 2, -3]$)	>>> y = compress(mask, a)			
>>> print y	>>> print y			
[10 20 50]	[10,20,50]			

y 10 20 50

[Jones,Oliphant]

Numpy: fancier indexing

>>> a[(0,1,2,3,4),(1,2,3,4,5)] array([1, 12, 23, 34, 45])

>>> a[3:,[0, 2, 5]]
array([[30, 32, 35],
 [40, 42, 45]])
 [50, 52, 55]])

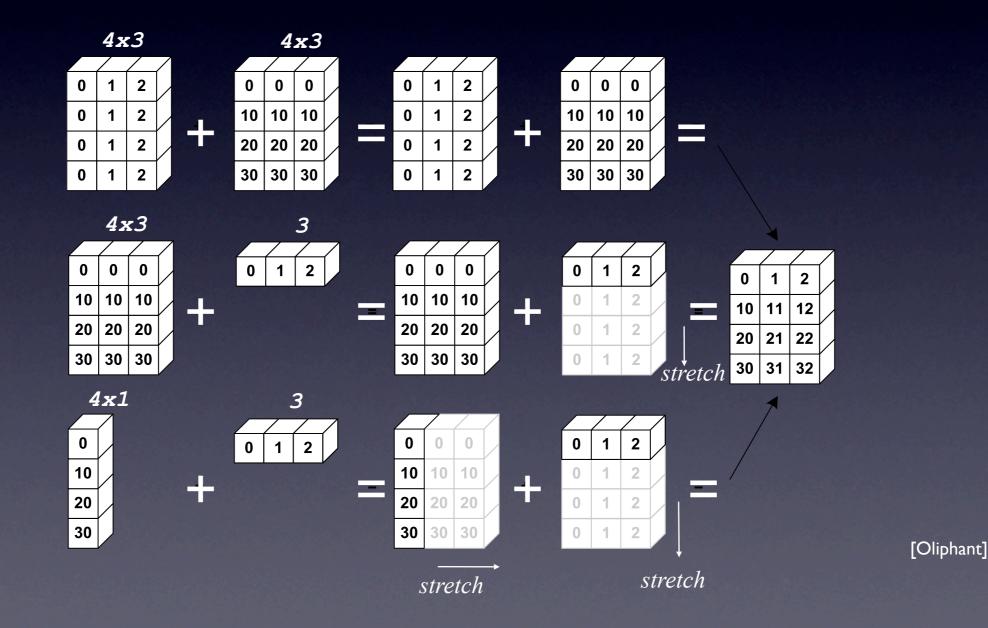
					\square	\square
0	1	2	3	4	5	
10	11	12	13	14	15	
20	21	22	23	24	25	
30	31	32	33	34	35	
40	41	42	43	44	45	
50	51	52	53	54	55	

Unlike slicing, fancy indexing creates copies instead of views into original arrays.

[Jones,Oliphant]

Numpy broadcasting

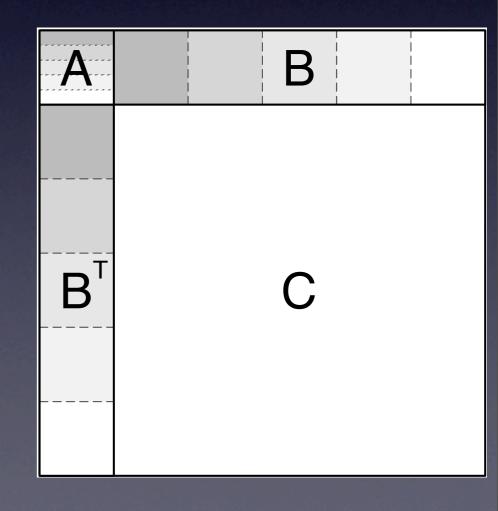
Semantic of binary operations between arrays



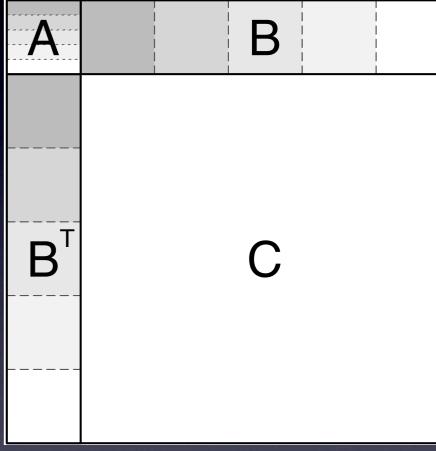
Get the most significative eigenvectors of a normalized matrix W, using only the submatrices A and B

Subsampling W to get A
Normalizing of the partial parts
Eigenvalue decomposition of A
Estimation of the Eigenvectors of W

 $\mathcal{W} = \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}$



Subsampling D to get A and B



A

B

B

С

Subsampling D to get A and B

#W is the initial matrix #ratio is the relative size of A with respect to W

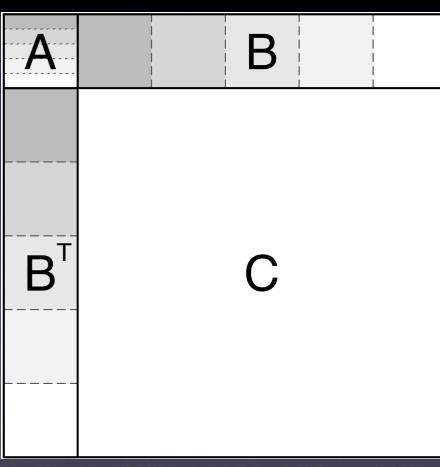
import numpy
from numpy import random

Subsampling D to get A and B

#W is the initial matrix #ratio is the relative size of A with respect to W

import numpy
from numpy import random

shuffled_indexes = numpy.arange(W.shape[0], dtype=int
random.shuffle(shuffled_indexes)



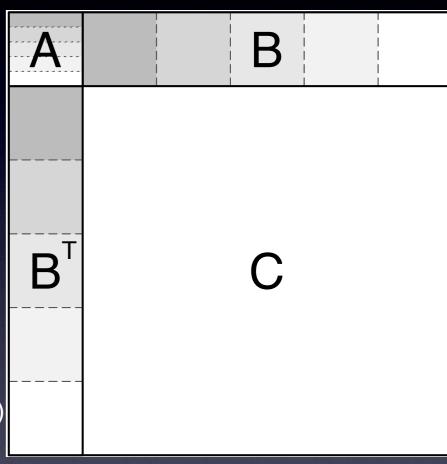
Subsampling D to get A and B

#W is the initial matrix #ratio is the relative size of A with respect to W

import numpy
from numpy import random

shuffled_indexes = numpy.arange(W.shape[0], dtype=int
random.shuffle(shuffled_indexes)

Na = int(numpy.round(elementQty*ratio))
Nb = elementQty-Na
a_indexes = shuffled_indexes[:Na]
b_indexes = shuffled_indexes[Na:]



Subsampling D to get A and B

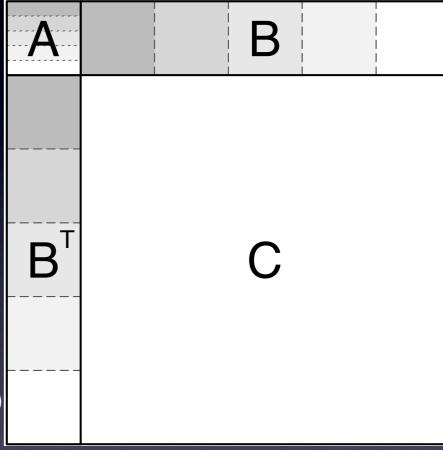
#W is the initial matrix #ratio is the relative size of A with respect to W

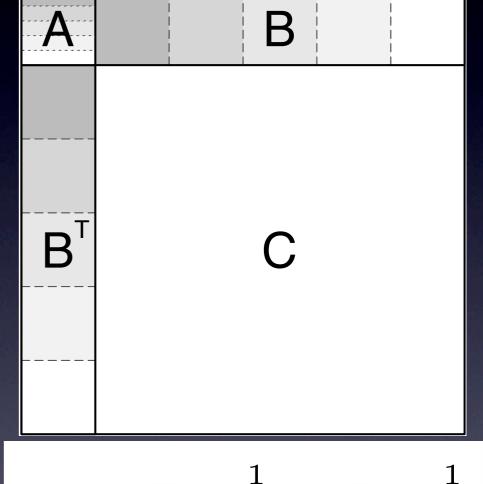
import numpy
from numpy import random

shuffled_indexes = numpy.arange(W.shape[0], dtype=int
random.shuffle(shuffled_indexes)

```
Na = int(numpy.round( elementQty*ratio ))
Nb = elementQty-Na
a_indexes = shuffled_indexes[:Na]
b_indexes = shuffled_indexes[Na:]
```

```
A = numpy.asmatrix(D[a_indexes,:][:,a_indexes])
B = numpy.asmatrix(D[a_indexes,:][:,b_indexes])
```



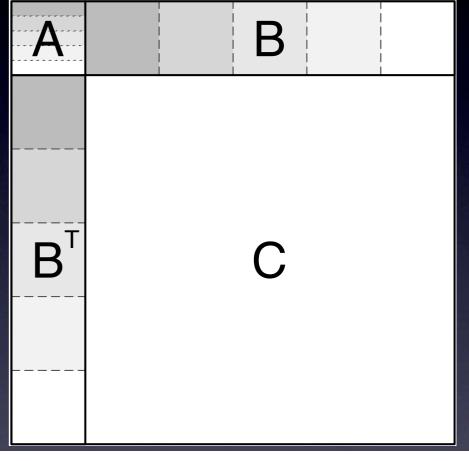


$$\mathcal{W} = \mathbf{D}^{-rac{1}{2}}\mathbf{W}\mathbf{D}^{-rac{1}{2}}$$
 $\hat{\mathbf{d}} = \left[egin{array}{c} \mathbf{a}_r + \mathbf{b}_r \ \mathbf{b}_c + \mathbf{B}^T \mathbf{A}^{-1} \mathbf{b}_r \end{array}
ight]$

Normalizing A and B

Normalizing A and B

a_r = A.sum(1)
b_r = B.sum(1)
b_c = B.T.sum(1)

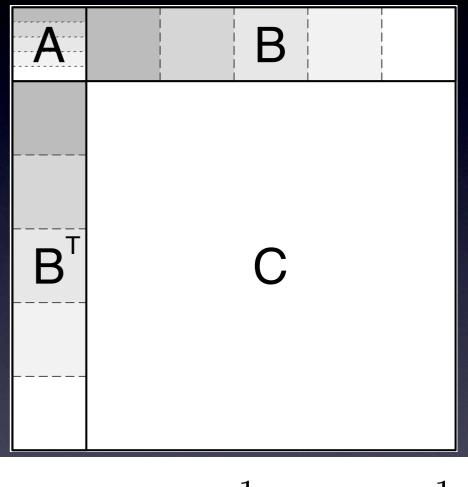


$$\mathcal{W} = \mathbf{D}^{-rac{1}{2}}\mathbf{W}\mathbf{D}^{-rac{1}{2}}$$
 $\hat{\mathbf{d}} = \left[egin{array}{c} \mathbf{a}_r + \mathbf{b}_r \ \mathbf{b}_c + \mathbf{B}^T \mathbf{A}^{-1} \mathbf{b}_r \end{array}
ight]$

Normalizing A and B

```
a_r = A.sum(1)
b_r = B.sum(1)
b_c = B.T.sum(1)
```

d_inv_sqr = 1./numpy.sqrt(d)



$$\mathcal{W} = \mathbf{D}^{-rac{1}{2}}\mathbf{W}\mathbf{D}^{-rac{1}{2}}$$
 $\hat{\mathbf{d}} = \left[egin{array}{c} \mathbf{a}_r + \mathbf{b}_r \ \mathbf{b}_c + \mathbf{B}^T \mathbf{A}^{-1} \mathbf{b}_r \end{array}
ight]$

Normalizing A and B

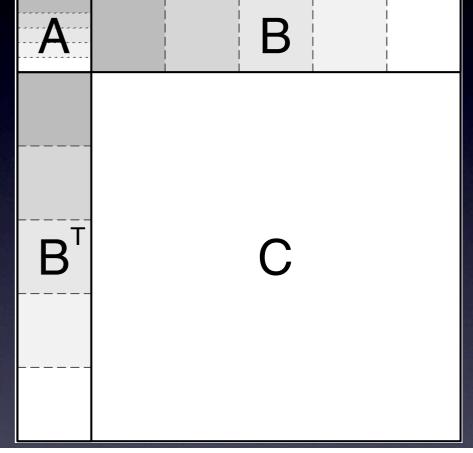
```
a_r = A.sum(1)

b_r = B.sum(1)

b_c = B.T.sum(1)
```

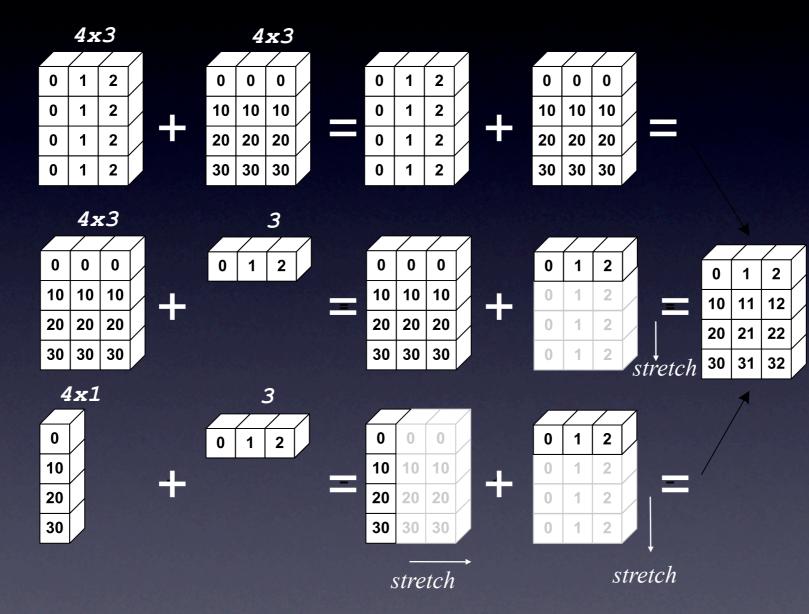
```
d_inv_sqr = 1./numpy.sqrt(d)
```

```
An = \
numpy.multiply(\
numpy.multiply( d_inv_sqrt[:Na], A ),\
d_inv_sqrt[:Na].T)
Bn = \
numpy.multiply(\
numpy.multiply( d_inv_sqrt[Na:].T, B ),\
d inv sqrt[:Na])
```



$$\mathcal{W} = \mathbf{D}^{-rac{1}{2}} \mathbf{W} \mathbf{D}^{-rac{1}{2}}, \ \hat{\mathbf{d}} = \left[egin{array}{c} \mathbf{a}_r + \mathbf{b}_r \ \mathbf{b}_c + \mathbf{B}^T \mathbf{A}^{-1} \mathbf{b}_r \end{array}
ight]$$

Numpy broadcasting



Equivalent syntax for the normalization

d_inv_sqrt = numpy.asarray(d_inv_sqrt)
An = d_inv_sqrt[:Na]*numpy.asarray(A)*d_inv_sqrt[:Na].T
#Warning here the d_inv_sqr and A are arrays not matrices

[Oliphant]

Eigenvalue decomposition of A

```
Delta,U = linalg.eig(An)
Delta_inv = numpy.asmatrix( numpy.diag(1./Delta) )
Ubar = numpy.vstack((\
     U,\
     Bn.T*U*Delta_inv\
     ))
```

return Delta, Ubar[numpy.argsort(shuffled_indexes),:]

$$\bar{\mathbf{A}} = \begin{bmatrix} \mathbf{B} \\ \mathbf{B}^{\mathsf{T}} \\ \mathbf{U} \end{bmatrix}$$

Time and energy to take a look at one more module?