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Abstract: The rather impressive extension library of medical image-processing platform 3D Slicer
lacks a wide range of machine-learning toolboxes. The authors have developed such a toolbox that
incorporates commonly used machine-learning libraries. The extension uses a simple graphical user
interface that allows the user to preprocess data, train a classifier, and use that classifier in common
medical image-classification tasks, such as tumor staging or various anatomical segmentations
without a deeper knowledge of the inner workings of the classifiers. A series of experiments
were carried out to showcase the capabilities of the extension and quantify the symmetry between
the physical characteristics of pathological tissues and the parameters of a classifying model.
These experiments also include an analysis of the impact of training vector size and feature selection
on the sensitivity and specificity of all included classifiers. The results indicate that training vector
size can be minimized for all classifiers. Using the data from the Brain Tumor Segmentation Challenge,
Random Forest appears to have the widest range of parameters that produce sufficiently accurate
segmentations, while optimal Support Vector Machines’ training parameters are concentrated in
a narrow feature space.

Keywords: 3D slicer; classification; extension; random forest; segmentation; sensitivity analysis;
support vector machine; tumor

1. Introduction

3D Slicer [1] is a free open-source platform for medical image visualization and processing.
Its main functionality comes from the Extension Library, which consists of various modules
that allow specific analyses of the input data, such as filtering, artefact suppression, or surface
reconstruction. There is a lack of machine-learning extensions except for the open-source DeepInfer [2].
This deep-learning deployment kit uses 3D convolutional neural networks to detect and localize the
target tissue. The development team demonstrated the use of this kit on the prostate segmentation
problem for image-guided therapy. Researchers and practitioners are able to select a publicly available
task-oriented network through the module without the need to design or train it.

To enable the use of other machine-learning techniques, we developed the Supervised
Segmentation Toolbox as an extensible machine-learning platform for 3D Slicer. Currently, Support
Vector Machine (SVM) and Random Forest (RF) classifiers are included. These classifiers are
well-researched and often used in image-processing tasks, as demonstrated in References [3–8].

SVMs [9] train by maximizing the distance between marginal samples (also referred to as support
vectors) and a discriminative hyperplane by maximizing f in the equation:

f (α1 · · · αn) = ∑ αi −
1
2 ∑

i
∑

j
αiαjyiyj

→
xi·
→
xj, (1)
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where y is defined as +1 for a class A sample and –1 for a class B sample, α is a Lagrangian multiplier,
and

→
x is the feature vector of the individual sample. On real data, this is often too strict because

of noisy samples that might cross their class boundary. This is solved by using a combination of
techniques known as the kernel trick and soft margining. The kernel trick uses a kernel function
φ to remap the original feature space to a higher-dimensional one by replacing the dot product in
Equation (1) with φ(xi)·φ

(
xj
)
. This allows linear separation of the data as required by the SVM.

An example of the kernel function is the radial basis function used in this study. Incorporating a soft
margin allows some samples to cross their class boundary. Examples of such soft-margin SVMs are the
C-SVM [10] and N-SVM [11]. The C parameter of the C-SVM modifies the influence of each support
vector on the final discriminatory hyperplane. The larger the C, the closer the soft-margin C-SVM is to
a hard-margin SVM. The N parameter of the N-SVM defines a minimum number of support vectors
and, consequently, an upper bound of the guaranteed maximum percentage of misclassifications.
Further modifications to the SVM can also be done, such as using fuzzy-data points for the training
dataset, as demonstrated in References [5,6].

RF uses a voting system on the results of the individual decision trees. Each decision tree is
created on the basis of a bootstrapped sample of the training data [12].

2. Materials and Methods

The data used in this study describe Low Grade Glioma (LGG) obtained by MRI. The dataset
consists of four images of one patient (LG_0001, Figure 1): T1- and T2-weighted, contrast-enhanced
T1C, and Fluid Attenuated Inversion Recovery (FL). These data are part of the training set featured in
the Brain Tumor Segmentation (BraTS) 2012 Challenge.
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Figure 1. Slice 88 of the LG_0001 data from the 2012 Brain Tumor Segmentation (BraTS) Challenge.
The dataset consists of a (a) T1-weighted image with labels as overlay; (b) postcontrast T1-weighted
image; (c) T2-weighted image; and (d) Fluid Attenuated Inversion Recovery (FL) image.

The free and open-source Supervised Segmentation Toolbox extension [24] of the 3D Slicer was
used throughout this study. The extension allows the user to train a range of classifiers using labeled
data. The user is also able to perform a grid search to select the optimal parameters for the classifier.
To achieve this, the extension uses either an already available function or a cross-validation algorithm
developed by the author of the extension, depending on the classifier library used. Currently, N-SVM
and C-SVM from the dlib library [13] and C-SVM and Random Forest from Shark-ml library [14] are

Figure 1. Slice 88 of the LG_0001 data from the 2012 Brain Tumor Segmentation (BraTS) Challenge.
The dataset consists of a (a) T1-weighted image with labels as overlay; (b) postcontrast T1-weighted
image; (c) T2-weighted image; and (d) Fluid Attenuated Inversion Recovery (FL) image.

The free and open-source Supervised Segmentation Toolbox extension [13] of the 3D Slicer was
used throughout this study. The extension allows the user to train a range of classifiers using labeled
data. The user is also able to perform a grid search to select the optimal parameters for the classifier.
To achieve this, the extension uses either an already available function or a cross-validation algorithm
developed by the author of the extension, depending on the classifier library used. Currently, N-SVM
and C-SVM from the dlib library [14] and C-SVM and Random Forest from Shark-ml library [15] are
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incorporated. The extension takes care of the parallelizable parts of the training and classification
subtasks, thus significantly reducing computation times. A preprocessing algorithm selection is also
a part of the extension. This allows for artefact correction or feature extraction. The extension workflow
is depicted in Figure 2.
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3. Results and Discussion

A series of tests were performed in order to provide a sense of the speed and accuracy of the
provided classifiers. Sensitivity and specificity metrics were used to evaluate the results. A classifier
that had a larger sum of specificity and sensitivity (or their respective means, when cross-validation
was used) was considered a better classifier. During the first test run, each type of classifier was trained
and evaluated using the single patient image set. Optimal training parameters of the classifiers were
obtained using a grid-search approach. The results are presented in Figures 3–5. The γ parameter
is common in both SVM classifiers and influences the variance of the radial basis kernel. A large γ

means that more data points will look similar, thus preventing overfitting. Using the aforementioned
dataset, the results indicate a relative insensitivity of the classification accuracy on this parameter.
For the given dataset, C values of the C-SVM larger than 1 seem optimal. The best results of the
N-SVM classifier are obtained with N around 10% or lower combined with a high-variance radial basis
function. Optimal RF training parameters were: a small node size of under 5, number of trees higher
than 800, no out-of-bag samples, and no random attributes.
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Figure 3. N-Support Vector Machine (SVM)-classifier (a) sensitivity and (b) specificity using different
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3. Results and Discussion

A series of tests were performed in order to provide a sense of the speed and accuracy of the
provided classifiers. Sensitivity and specificity metrics were used to evaluate the results. A classifier
that had a larger sum of specificity and sensitivity (or their respective means, when cross-validation
was used) was considered a better classifier. During the first test run, each type of classifier was trained
and evaluated using the single patient image set. Optimal training parameters of the classifiers were
obtained using a grid-search approach. The results are presented in Figures 3–5. The γ parameter
is common in both SVM classifiers and influences the variance of the radial basis kernel. A large γ

means that more data points will look similar, thus preventing overfitting. Using the aforementioned
dataset, the results indicate a relative insensitivity of the classification accuracy on this parameter.
For the given dataset, C values of the C-SVM larger than 1 seem optimal. The best results of the
N-SVM classifier are obtained with N around 10% or lower combined with a high-variance radial basis
function. Optimal RF training parameters were: a small node size of under 5, number of trees higher
than 800, no out-of-bag samples, and no random attributes.
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Figure 5. Random Forest classifier sensitivity and specificity using different parameters. Left to right:
Different node size, number of trees, OOB and number of random attributes.

The second test run consisted of using a different number of slices around the center of the
tumor to reveal the impact of the size of the training set on the specificity and sensitivity of all
classifiers (Figures 6a–7). The results indicate that reducing the number of unique training samples
has a negligible effect on the subsequent classification accuracy. RF shows slightly better classification
accuracy improvement when using a larger training vector. Using a reduced training dataset influences
training process length and might result in a simpler classifier, which is easier to interpret and has
shorter classification computation times. The classification time is a limiting factor of using these
methods in real-time applications.
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The second test run consisted of using a different number of slices around the center of the
tumor to reveal the impact of the size of the training set on the specificity and sensitivity of all
classifiers (Figures 6a–7). The results indicate that reducing the number of unique training samples
has a negligible effect on the subsequent classification accuracy. RF shows slightly better classification
accuracy improvement when using a larger training vector. Using a reduced training dataset influences
training process length and might result in a simpler classifier, which is easier to interpret and has
shorter classification computation times. The classification time is a limiting factor of using these
methods in real-time applications.

Figure 5. Random Forest classifier sensitivity and specificity using different parameters. Left to right:
Different node size, number of trees, OOB and number of random attributes.

The second test run consisted of using a different number of slices around the center of the tumor
to reveal the impact of the size of the training set on the specificity and sensitivity of all classifiers
(Figures 6a and 7). The results indicate that reducing the number of unique training samples has
a negligible effect on the subsequent classification accuracy. RF shows slightly better classification
accuracy improvement when using a larger training vector. Using a reduced training dataset influences
training process length and might result in a simpler classifier, which is easier to interpret and has
shorter classification computation times. The classification time is a limiting factor of using these
methods in real-time applications.



Symmetry 2018, 10, 627 5 of 9

Symmetry 2016, xx, x 5 of 9

0 10 20 30 40 50 60 70 80 90 100

Slice Count

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

U
ni

qu
e 

T
ra

in
in

g 
S

am
pl

es

#105

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

S
en

si
tiv

ity
 a

nd
 s

pe
ci

fic
ity

Unique Training Samples
Sensitivity
Specificity

(a)

0 10 20 30 40 50 60 70 80 90 100

Slice Count

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

U
ni

qu
e 

T
ra

in
in

g 
S

am
pl

es

#105

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

S
en

si
tiv

ity
 a

nd
 s

pe
ci

fic
ity

Unique Training Samples
Sensitivity
Specificity

(b)

Figure 6. (a) N-SVM and (b) C-SVM sensitivity and specificity using different training vector sizes.
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Figure 7. RF-classifier sensitivity and specificity using different training vector sizes.

The effect of different image types on classifier accuracy was examined in the last test run
(Figures 8a–9). Slices 88 of the LG_0001 images were used as a source of training samples. Sufficient
sensitivity and specificity were obtained by only using T1- and T2-weighted images. Furthermore, all
classifiers benefited from the addition of a postcontrast T1-weighted image. The RF classifier achieved
best overall results with the use of FL, and postcontrast T1- and T2-weighted images.
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The effect of different image types on classifier accuracy was examined in the last test run
(Figures 8a–9). Slices 88 of the LG_0001 images were used as a source of training samples. Sufficient
sensitivity and specificity were obtained by only using T1- and T2-weighted images. Furthermore, all
classifiers benefited from the addition of a postcontrast T1-weighted image. The RF classifier achieved
best overall results with the use of FL, and postcontrast T1- and T2-weighted images.
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The effect of different image types on classifier accuracy was examined in the last test run
(Figures 8a and 9). Slices 88 of the LG_0001 images were used as a source of training samples. Sufficient
sensitivity and specificity were obtained by only using T1- and T2-weighted images. Furthermore, all
classifiers benefited from the addition of a postcontrast T1-weighted image. The RF classifier achieved
best overall results with the use of FL, and postcontrast T1- and T2-weighted images.
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Figure 8. Classifier sensitivity using different input images. N-SVM (a), C-SVM(b).
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The following standardized procedure was designed in order to compare classifier performance.
Training samples were extracted from the whole volume of the unmodified T1C and T2 images.
Then, sensitivity and specificity were obtained using fivefold cross-validation. The best performing
parameters and results are reported in Table 1. Segmentations are shown in Figure 10. Classification
results can be further improved by using preprocessed data instead of raw data, and by means of
postprocessing to remove the outlying voxels and inlying holes as demonstrated in Reference [15].

Table 1. Classifier comparison and best-performing parameters.

Parameters Sensitivity Specificity Acc. Prec. DICE Jaccard

C-SVM γ = 1.0, C = 1.0 0.72 0.98 0.99 0.96 0.80 0.66

N-SVM γ = 10.0−3, N = 0.1 0.77 0.97 0.99 0.96 0.82 0.70

RF
0 % OOB,
0 random attributes,
1200 trees, node size 2
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Figure 8. Classifier sensitivity using different input images. N-SVM (a), C-SVM (b).
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The following standardized procedure was designed in order to compare classifier performance.
Training samples were extracted from the whole volume of the unmodified T1C and T2 images.
Then, sensitivity and specificity were obtained using fivefold cross-validation. The best performing
parameters and results are reported in Table 1. Segmentations are shown in Figure 10. Classification
results can be further improved by using preprocessed data instead of raw data, and by means of
postprocessing to remove the outlying voxels and inlying holes as demonstrated in Reference [15].

Table 1. Classifier comparison and best-performing parameters.

Parameters Sensitivity Specificity Acc. Prec. DICE Jaccard

C-SVM γ = 1.0, C = 1.0 0.72 0.98 0.99 0.96 0.80 0.66
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The following standardized procedure was designed in order to compare classifier performance.
Training samples were extracted from the whole volume of the unmodified T1C and T2 images.
Then, sensitivity and specificity were obtained using fivefold cross-validation. The best performing
parameters and results are reported in Table 1. Segmentations are shown in Figure 10. Classification
results can be further improved by using preprocessed data instead of raw data, and by means of
postprocessing to remove the outlying voxels and inlying holes as demonstrated in Reference [16].

Table 1. Classifier comparison and best-performing parameters.

Parameters Sensitivity Specificity Acc. Prec. DICE Jaccard

C-SVM γ = 1.0, C = 1.0 0.72 0.98 0.99 0.96 0.80 0.66

N-SVM γ = 10.0−3, N = 0.1 0.77 0.97 0.99 0.96 0.82 0.70

RF
0 % OOB,
0 random attributes,
1200 trees, node size 2
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Figure 10. (a) RF, (b) C-SVM, and (c) N-SVM classification results of the slice 88 (white) and ground
truth (red).

Lastly, the performance of the RF classifier trained on all tumor cores of the 20 real high-grade
glioma volumes using the 3D Slicer extension were compared to similar studies performed on the
BraTS dataset. The values were obtained as a mean of fivefold cross-validation. This comparison is
shown in Table 2. The other DICE values are from Reference [16].

The means to combine the results of different classifiers to further expand the usability of the
Supervised Segmentation Toolbox extension were added. Currently, logical AND and OR and a
majority voting system are implemented. An addition of a Multiple Classifier System (MCS) is
currently considered. A review of the advantages of MCS is provided by Wozniak et al. [17]. Termenon
and Graña [18] used a two-stage MCS where the second classifier was trained on low-confidence data
obtained by training and analysis of the first classifier. In the future, the authors expect implementing
additional classifiers as well. Adding a Relevance Vector Machine (RVM), for example, might bring an
improvement over SVM [19].

Table 2. RF classifier comparison with similar studies. The classifier was trained using all 20 of the real
high-grade glioma volumes, and the DICE value is a mean of fivefold cross-validation.

Paper Approach DICE

This paper RF 0.43
Geremia [20] Spatial decision forests with intrinsic hierarchy 0.32

Kapás [15] RF 0.58
Bauer [21] Integrated hierarchical RF 0.48
Zikic [22] Context-sensitive features with a decision tree ensemble 0.47
Festa [23] RF using neighborhood and local context features 0.50

4. Conclusions

The Supervised Segmentation Toolbox extension was presented as an addition to the 3D Slicer
extension library. This extension allows the user to train and use three types of classifiers, with more to
be added in the future. The usability of the extension was demonstrated on a brain-tumor segmentation
use case. The effects of the training parameters of all classifiers on the final sensitivity and specificity
of the classification were considered to provide an insight into usable parameter selection for future
studies. A low γ in combination with softer margin terms resulted in a better performing classifier
commonly for both SVM classifiers. This might be largely due to a limited training sample, and a
broader dataset should be analyzed in order to generalize the results. The RF classifier performed best
using no added randomization, a relatively large tree count, and a small node size. The possibility of
reducing training vector size in order to reduce model complexity and decrease classification time is
verified. A 20-fold increase of the number of unique training samples resulted, at best, in a 2% increase
of specificity. All combinations of input images are considered as a training input for all classifiers, and
the significance of adding more types of images is discussed. A combination of T1C and T2 images
performed sufficiently for all classifiers. The addition of the FL image brought a slight improvement
in sensitivity. Lastly, best-performing parameter combinations were listed and the corresponding

Figure 10. (a) RF, (b) C-SVM, and (c) N-SVM classification results of the slice 88 (white) and ground
truth (red).

Lastly, the performance of the RF classifier trained on all tumor cores of the 20 real high-grade
glioma volumes using the 3D Slicer extension were compared to similar studies performed on the
BraTS dataset. The values were obtained as a mean of fivefold cross-validation. This comparison is
shown in Table 2. The other DICE values are from Reference [17].

The means to combine the results of different classifiers to further expand the usability of
the Supervised Segmentation Toolbox extension were added. Currently, logical AND and OR and
a majority voting system are implemented. An addition of a Multiple Classifier System (MCS) is
currently considered. A review of the advantages of MCS is provided by Wozniak et al. [18]. Termenon
and Graña [19] used a two-stage MCS where the second classifier was trained on low-confidence data
obtained by training and analysis of the first classifier. In the future, the authors expect implementing
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additional classifiers as well. Adding a Relevance Vector Machine (RVM), for example, might bring
an improvement over SVM [20].

Table 2. RF classifier comparison with similar studies. The classifier was trained using all 20 of the real
high-grade glioma volumes, and the DICE value is a mean of fivefold cross-validation.

Paper Approach DICE

This paper RF 0.43
Geremia [21] Spatial decision forests with intrinsic hierarchy 0.32

Kapás [16] RF 0.58
Bauer [22] Integrated hierarchical RF 0.48
Zikic [23] Context-sensitive features with a decision tree ensemble 0.47
Festa [24] RF using neighborhood and local context features 0.50

4. Conclusions

The Supervised Segmentation Toolbox extension was presented as an addition to the 3D Slicer
extension library. This extension allows the user to train and use three types of classifiers, with
more to be added in the future. The usability of the extension was demonstrated on a brain-tumor
segmentation use case. The effects of the training parameters of all classifiers on the final sensitivity and
specificity of the classification were considered to provide an insight into usable parameter selection
for future studies. A low γ in combination with softer margin terms resulted in a better performing
classifier commonly for both SVM classifiers. This might be largely due to a limited training sample,
and a broader dataset should be analyzed in order to generalize the results. The RF classifier performed
best using no added randomization, a relatively large tree count, and a small node size. The possibility
of reducing training vector size in order to reduce model complexity and decrease classification time is
verified. A 20-fold increase of the number of unique training samples resulted, at best, in a 2% increase
of specificity. All combinations of input images are considered as a training input for all classifiers,
and the significance of adding more types of images is discussed. A combination of T1C and T2 images
performed sufficiently for all classifiers. The addition of the FL image brought a slight improvement
in sensitivity. Lastly, best-performing parameter combinations were listed and the corresponding
results were compared. The RF classifier had the largest sensitivity and worst specificity, and C-SVM
performed oppositely. The significance of these two metrics largely depends on the type of task for
which the classifiers are used. All sensitivity and specificity data were obtained directly using the 3D
Slicer extension.

Supplementary Materials: The authors publicly release the source code of the Supervised Segmentation Toolbox.
The source code can be found on GitHub [13]. The BraTS 2012 dataset is available on the challenge’s website.
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SVM Support Vector Machine
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