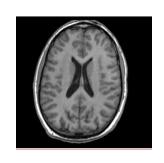
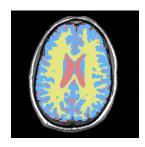
Automatic Segmentation of Brain Structures

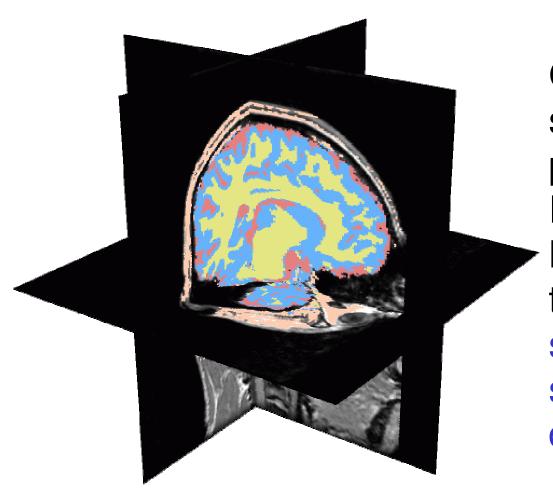


Sonia Pujol, Ph.D.

Surgical Planning Laboratory
Harvard Medical School



Goal of the course



Guiding you step by step through the process of using the Expectation-Maximization algorithm to automatically segment brain structures from MRI data.

Algorithm History

12-year of algorithm development

- 1996: Williams Wells et al.
 EM framework for simultaneous estimation of bias field a label map. IEEE Transactions on Medical Imaging.
- 1999: Kapur et al.
 Model noise via Markov Random Field . MIT PhD Thesis
- 2002: Van Leemput et al.
 Non-spatial tissue priors. IEEE Transactions on Medical Imaging
- Since 2002: Pohl et al.
 Deformable registration to align atlas (MICCAI)
 Hierarchical framework to model anatomical dependencies (ISBI)
- 2007: Brad Davis et al.: EMSegmenter in Slicer3

Material

Slicer 3.4 Software

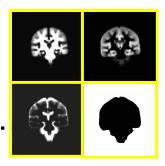
./Slicer.exe (Windows) or ./Slicer (Linux/Mac)

AutomaticSegmentation.zip dataset

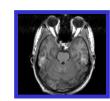
Disclaimer: It is the responsibility of the user of 3DSlicer to comply with both the terms of the license and with the applicable laws, regulations and rules.

Tutorial dataset

Pre-computed generic atlas of the brain.......



• T1 and T2 volumes



Anatomical Tree

- The anatomical tree defines the hierarchy of structures that will be segmented.
- In this course, we focus on the following hierarchy
 - Intracranial Cavity
 - White Matter (WM)
 - Grey Matter (GM)
 - Cerebrospinal Fluid (CSF)
 - Background
 - Air
 - Skull

EM Pipeline

Step 1: Pre-processing

Step 2: Patient-specific atlas generation

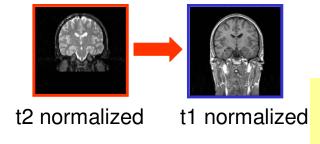
Step 3: Automatic segmentation

EM Pipeline: Preprocessing

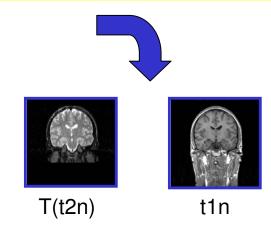
Patient data

Intensity Normalization

Normalize the intensity of t1 and t2

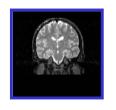


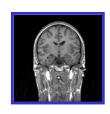
Target to Target Registration
Align t2 to t1



EM Pipeline: Patient-Specific Atlas Generation

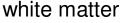
Registered Normalized Patient data





t1n

Generic atlas



csf

grey matter

background

Atlas to target registration

Register the generic atlas to the images to create the patient-specific atlas

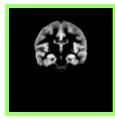
Patient-specific atlas

Anatomical Guided Segmentation with non-stationary tissue class distributions in an expectation maximization framework. Pohl K., Bouix S., Kikinis R. and Grimson E. In Proc.ISBIT 2004: IEEE International Symposium on Biomedical Imaging:From Nano to Macro, pp 81-84



white matter

csf

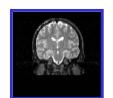


grey matter

background

EM Pipeline: Segmentation

Normalized Patient data



T(t2) normalized



normalized

white matter

Patient-specific atlas

csf

grey matter

background

Anatomical Guided Segmentation with nonstationary tissue class distributions in an expectation maximization framework. Pohl K., Bouix S., Kikinis R. and Grimson E. In Proc.ISBIT 2004: IEEE International Symposium on Biomedical Imaging:From Nano to Macro, pp 81-84

Segment using the Expectation Maximization algorithm

EP Pipeline: Segmentation Algorithm

Expectation Step

classifies the MR voxels in tissue classes (Gray Matter, White Matter, CSF)

Maximization Step

applies the intensity correction as a function of the tissue class

Running Slicer3

Mac/Linux

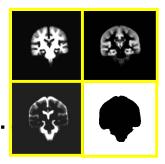
Run ./Slicer3 in Slicer3-build/

Windows

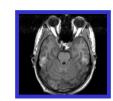
Run ./Slicer3.exe in Slicer3-build/

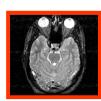
Tutorial dataset

Pre-computed generic atlas of the brain......



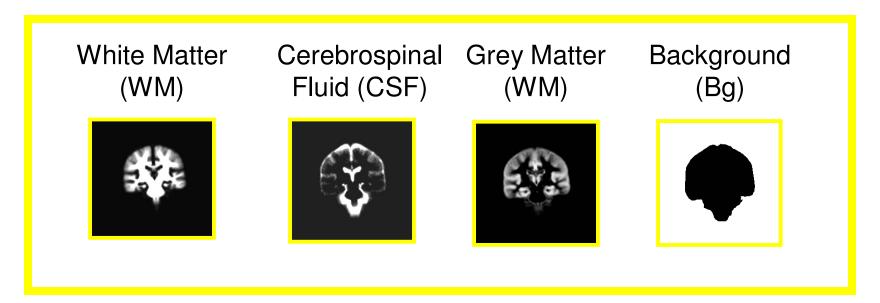
T1 and T2 volumes



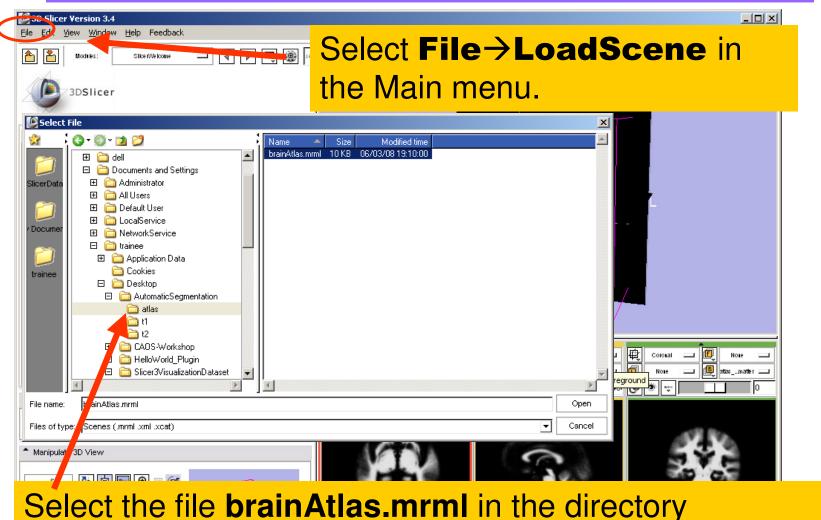


Generic Brain Atlas

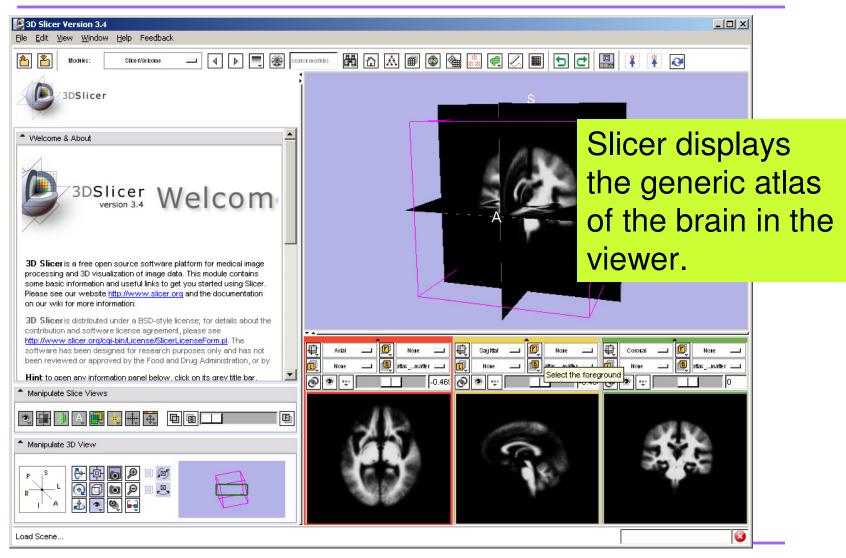
The Generic Brain Atlas is composed of four grey-levels volumes which correspond to the structures that will be automatically segmented in the MRI example datasets.



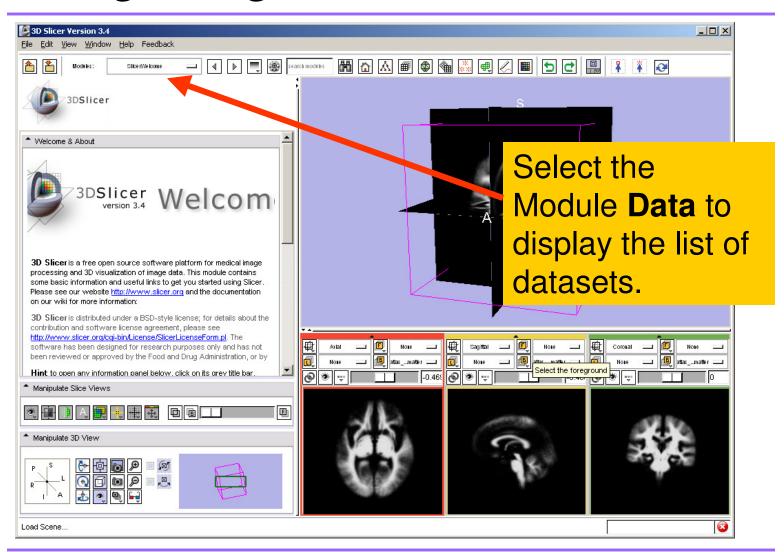
Loading the generic atlas of the brain

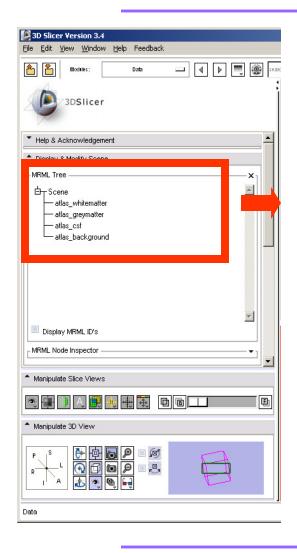


Select the file **brainAtlas.mrml** in the directory **AutomaticSegmentation**/atlas and click on **Open**



Automatic Segmentation. Sonia Pujol, Ph.D., Harvard Medical School National Alliance for Medical Image Computing

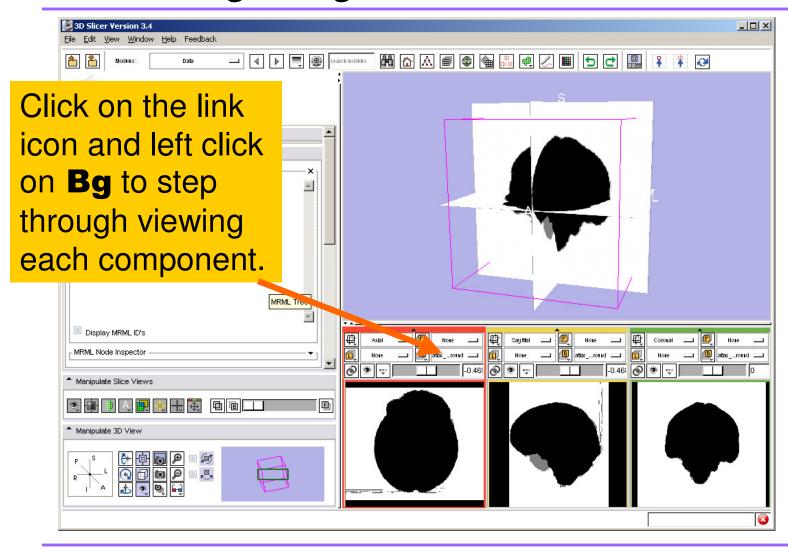


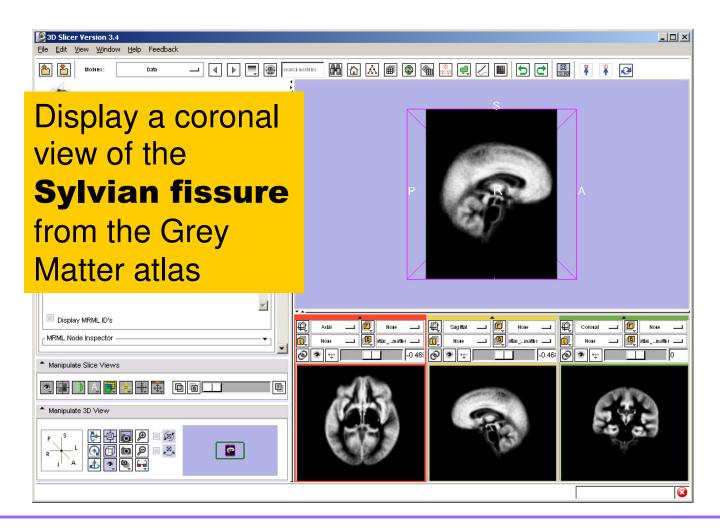


The generic atlas is composed of 4 volumes:

- -White Matter
- -Grey Matter
- -CSF
- -Background

Loading the generic atlas of the brain





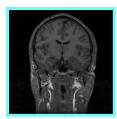
Generic Atlas Generation (Step 1)

S1 S2 Sn

n=82 healthy subjects, ages 25-40

Register all the subjects to the training subject

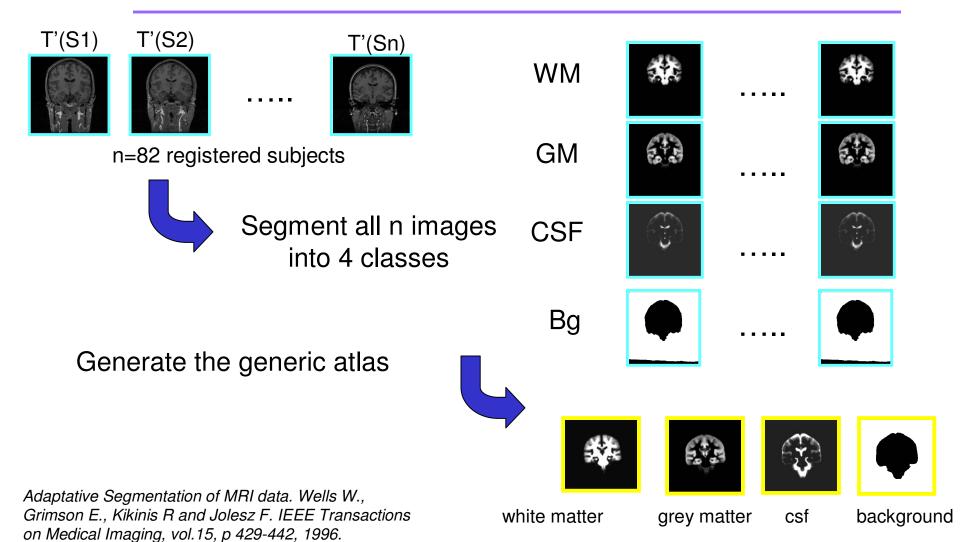
A Binary Entropy Measure to Assess Non-rigid Registration Algorithms. S.Warfield, J. Rexilius, P. Huppi, T.Inder, E. Miller, W.Wells, G. Zientara, F. Jolesz, R. Kikinis. In Proc. MICCAI 2001: Medical Image Computing and Computer-Assisted Interventions, pp 266-274.



Training subject (randomly chosen)

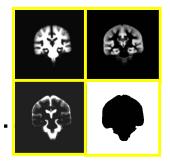
n=82 registered subjects

Generic Atlas Generation (Step 2)

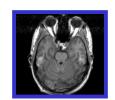


Tutorial dataset

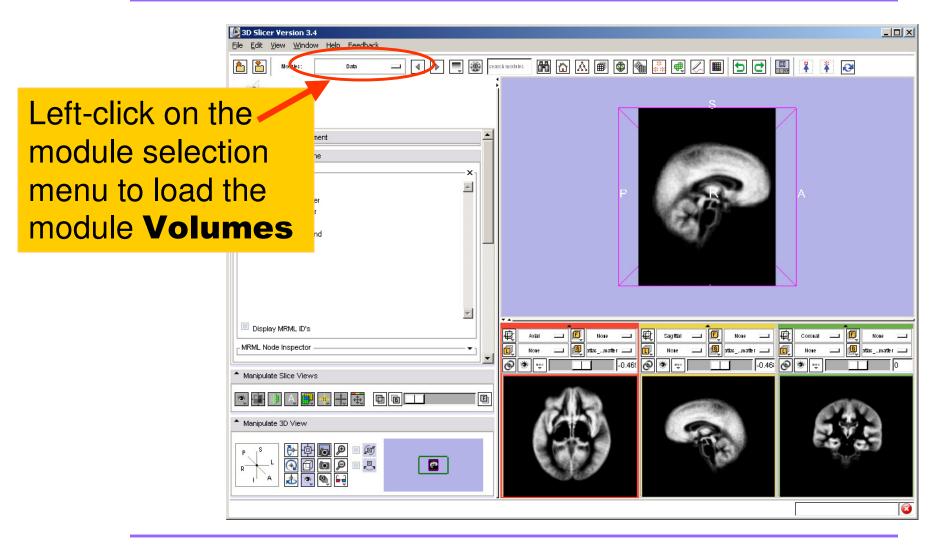
Pre-computed generic atlas of the brain......



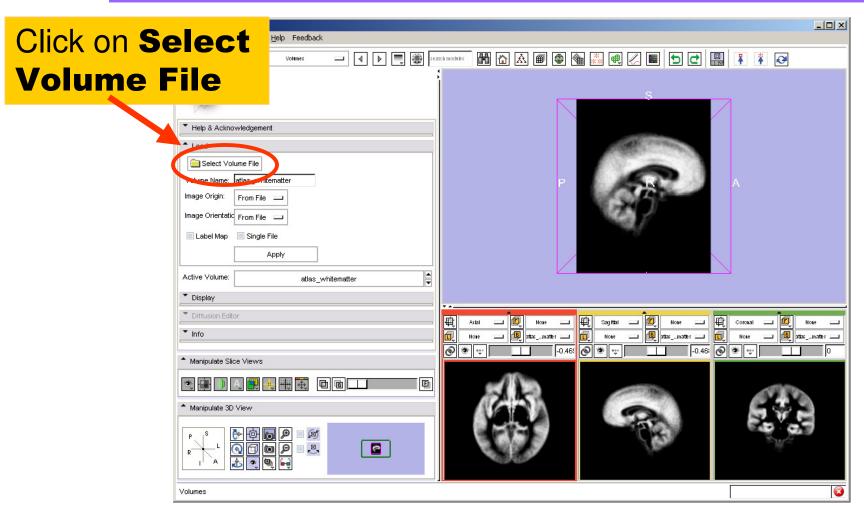
T1 and T2 volumes



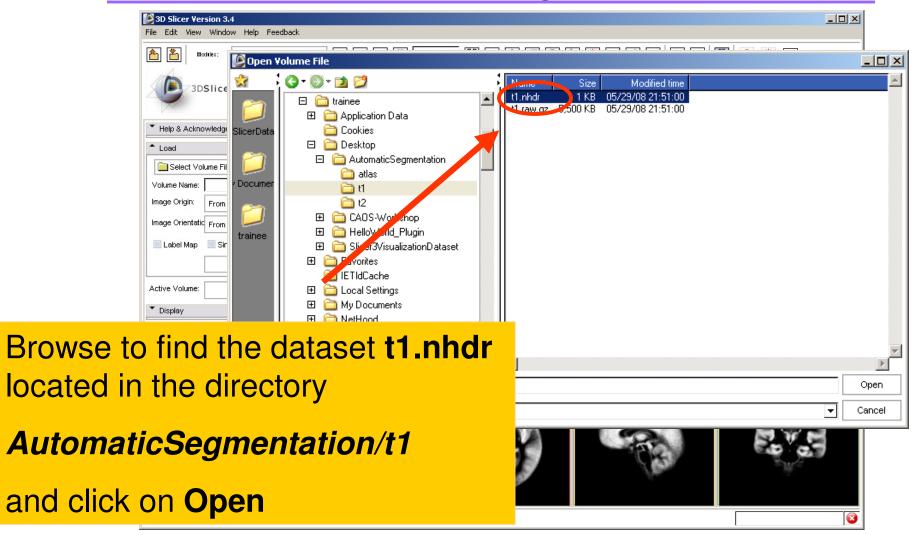
Loading T1 Volume

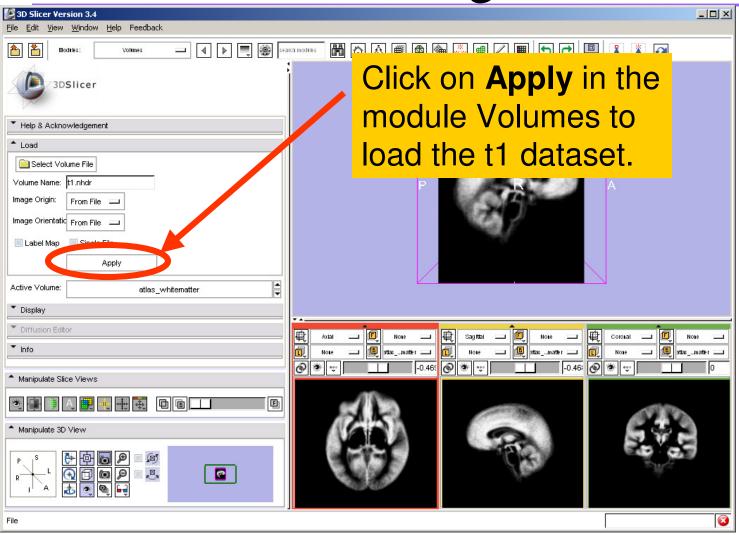


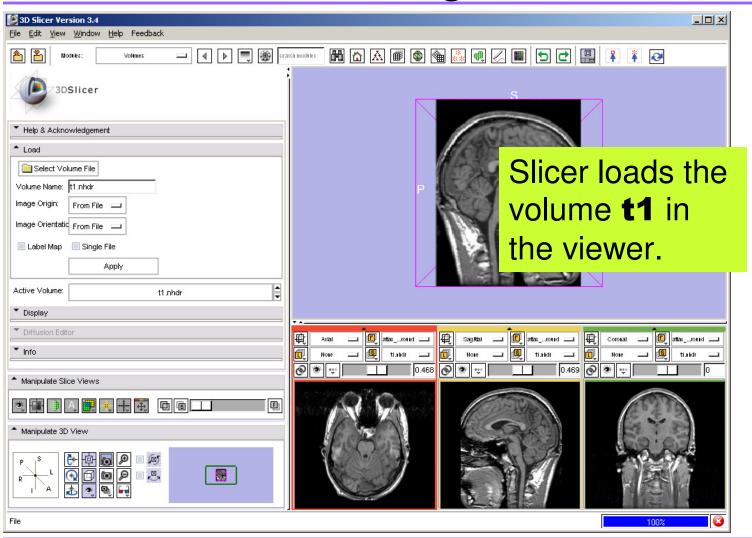
Loading T1 Volume

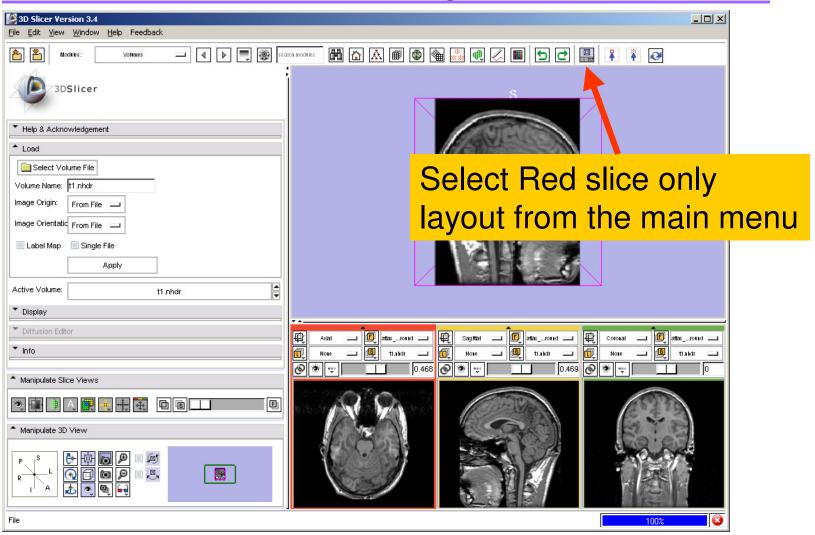


Loading T1 Volume



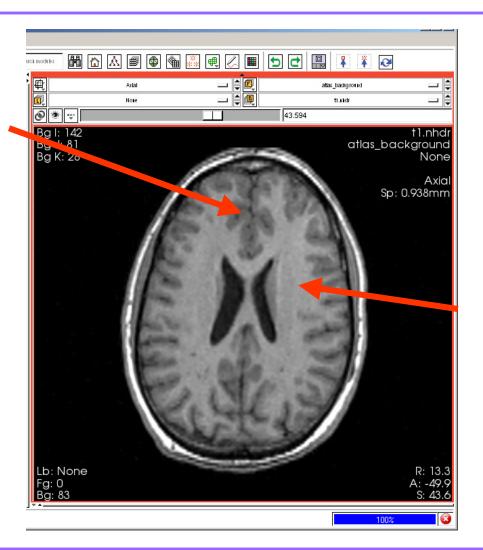




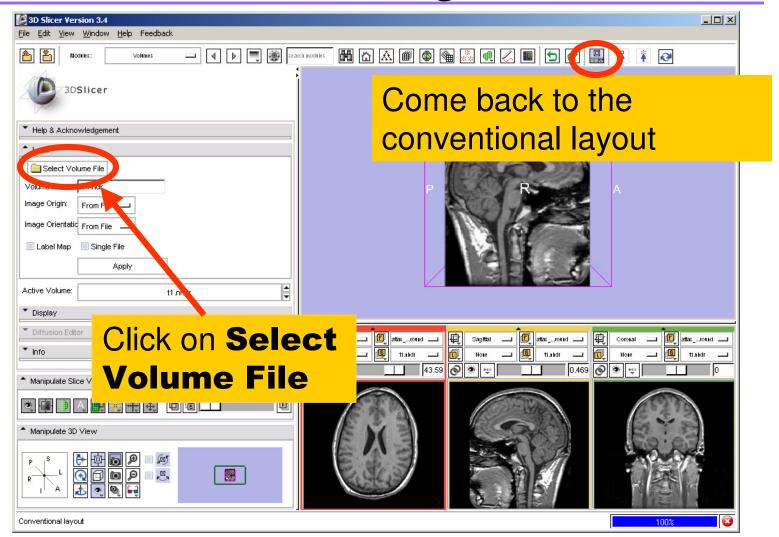


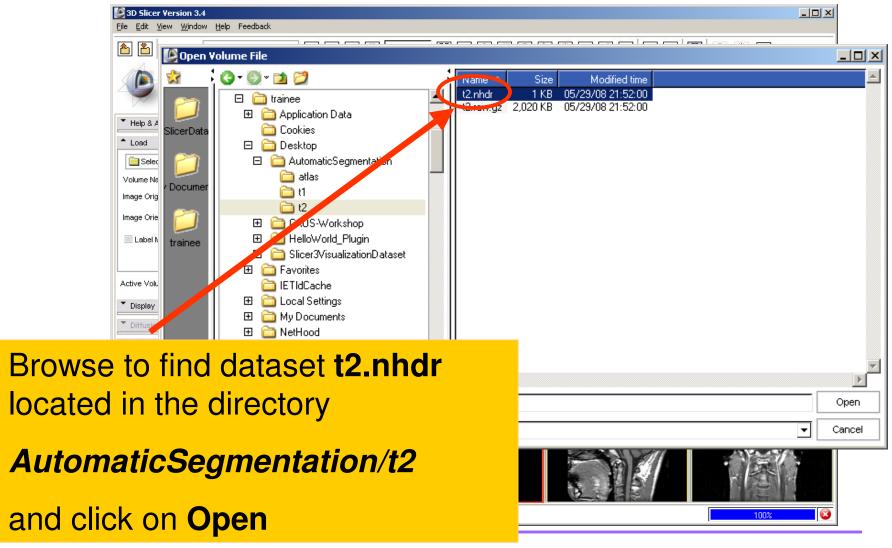
T1 contrast

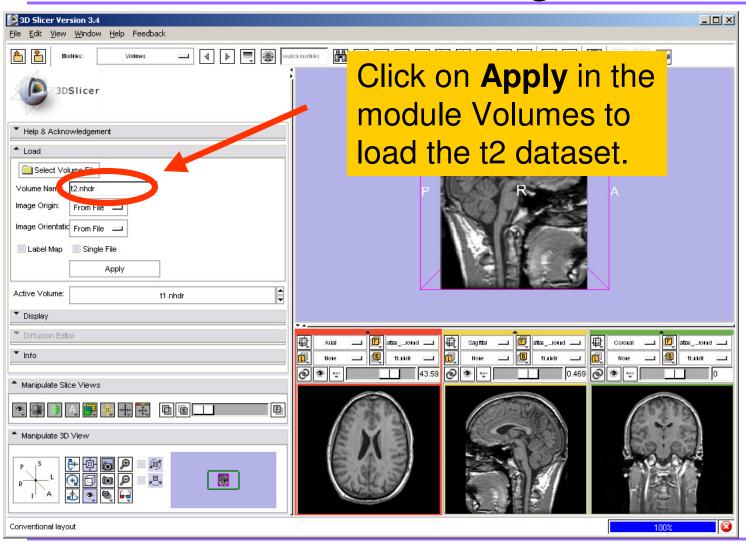
Grey Matter



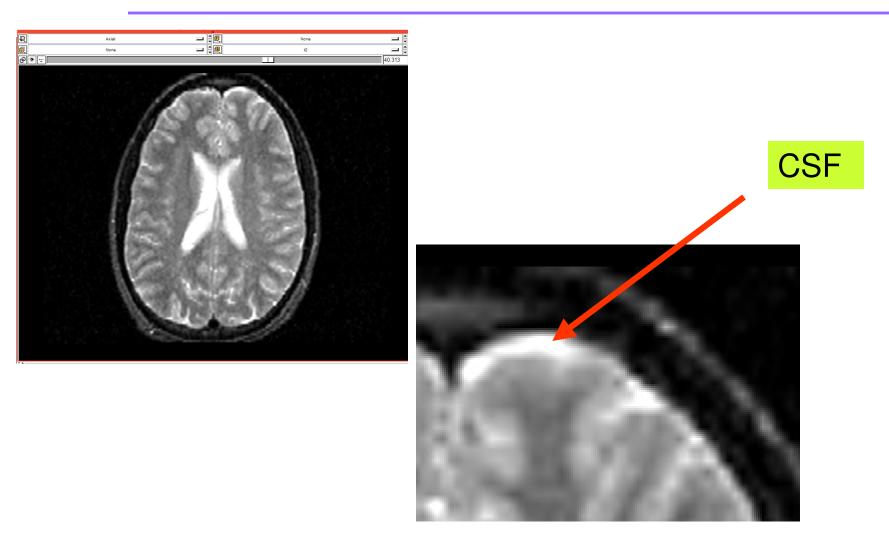
White Matter







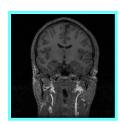
T2 contrast



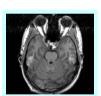
Generic Atlas

S1

n=82 healthy subjects, ages 25-40

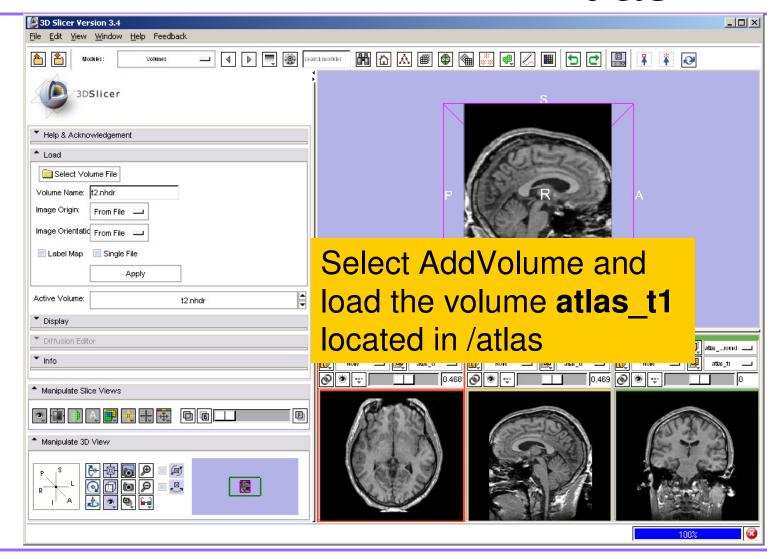


Training subject (randomly chosen)

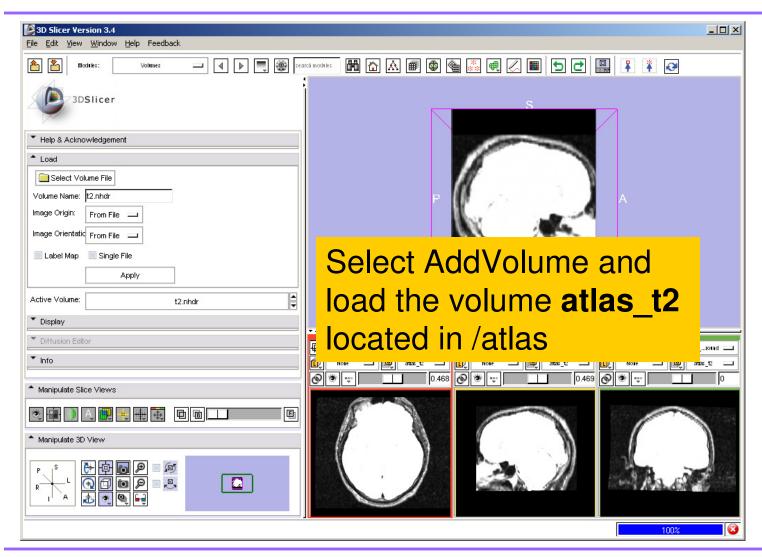


t1 and t2 of the training subject

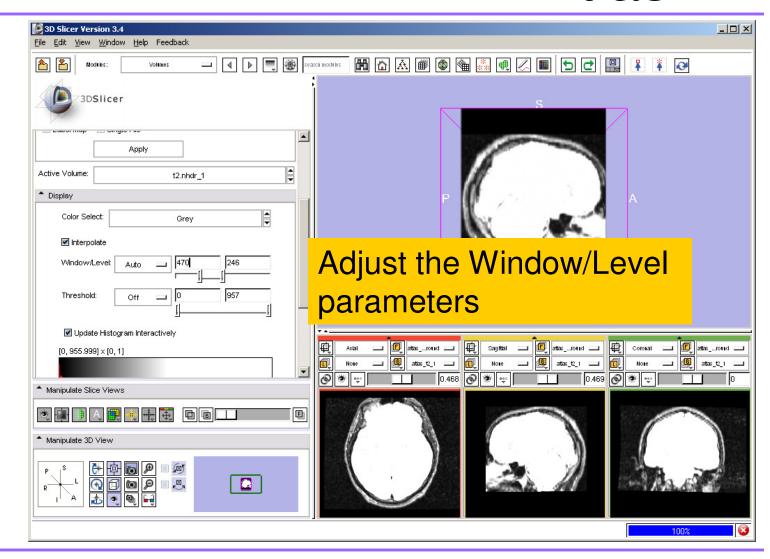
Atlas T1



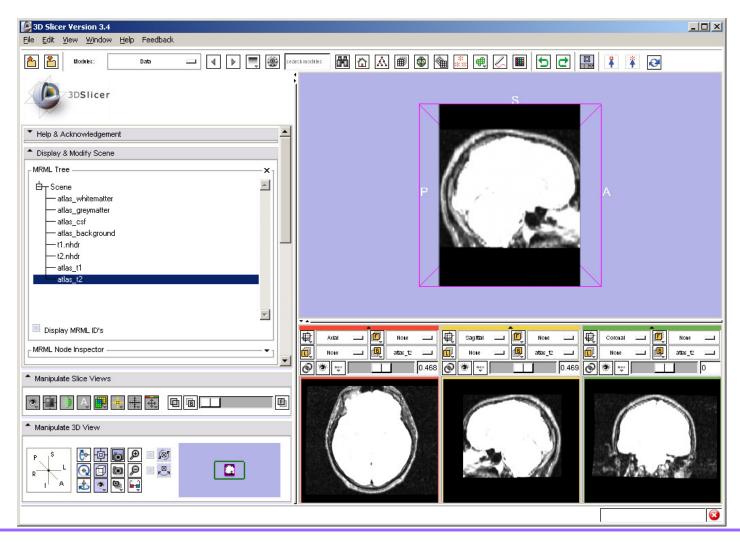
Atlas T2



Atlas T2

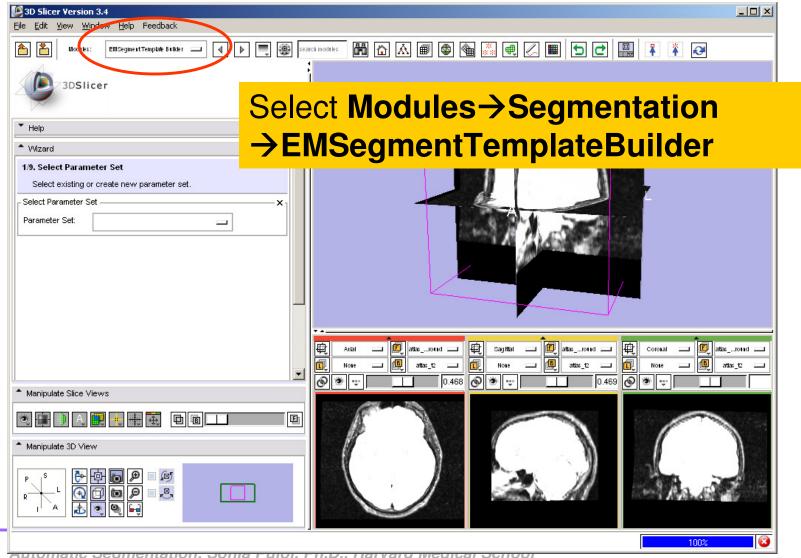


Training Datasets

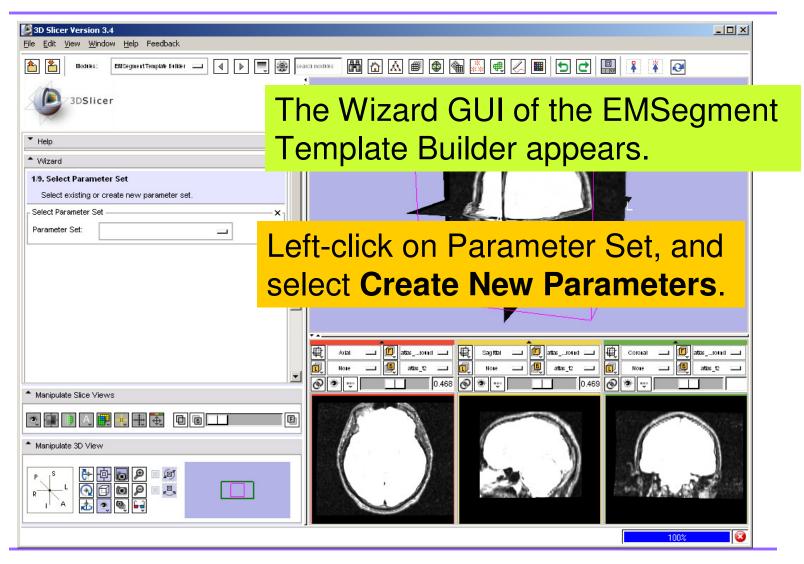


Template Builder: Parameters Settings

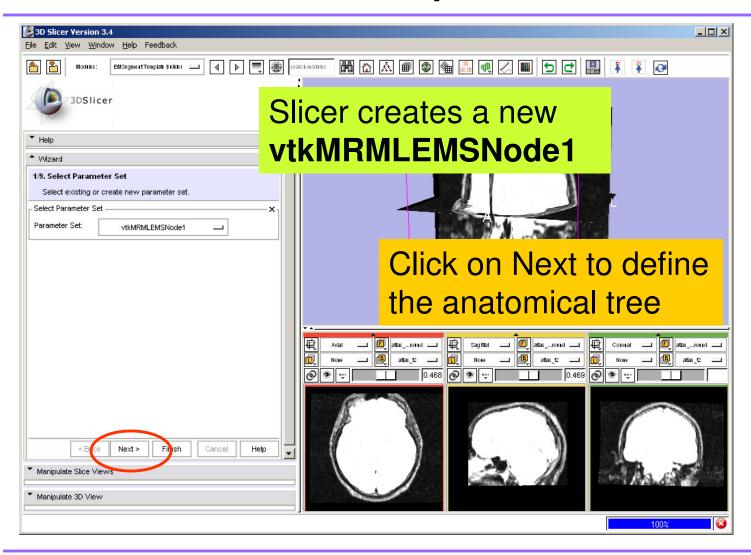
Template Builder

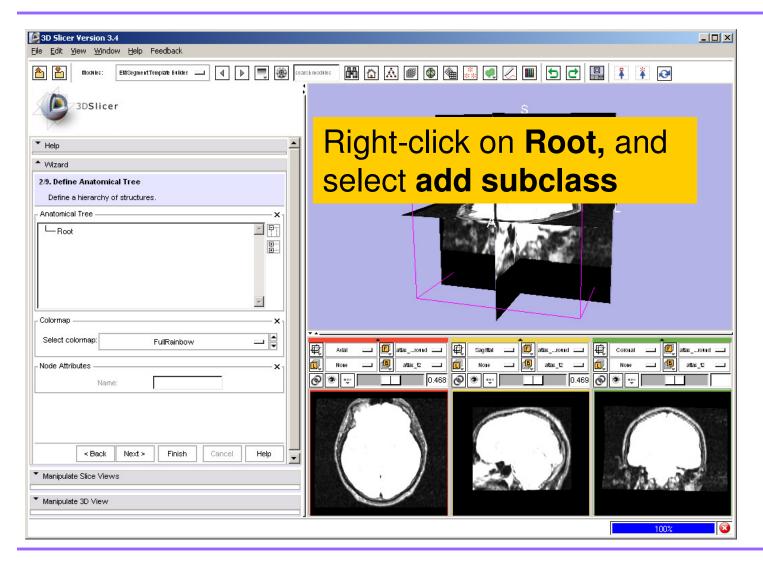


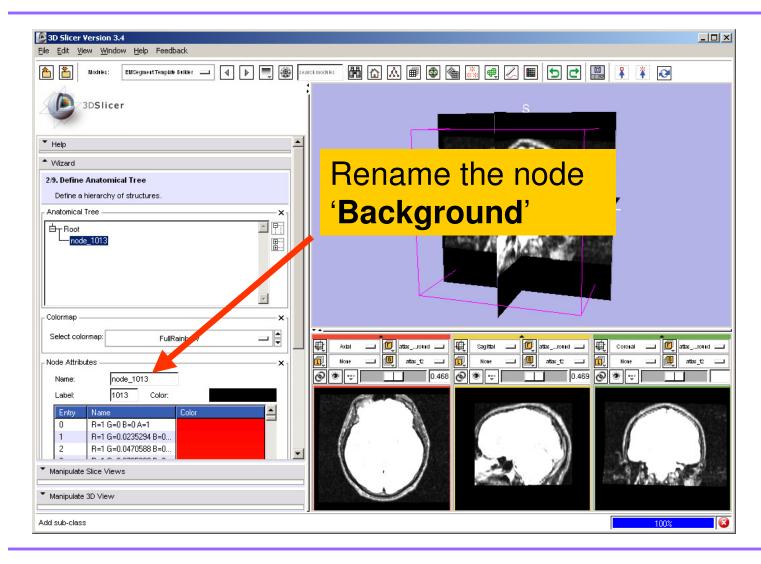
Template Builder

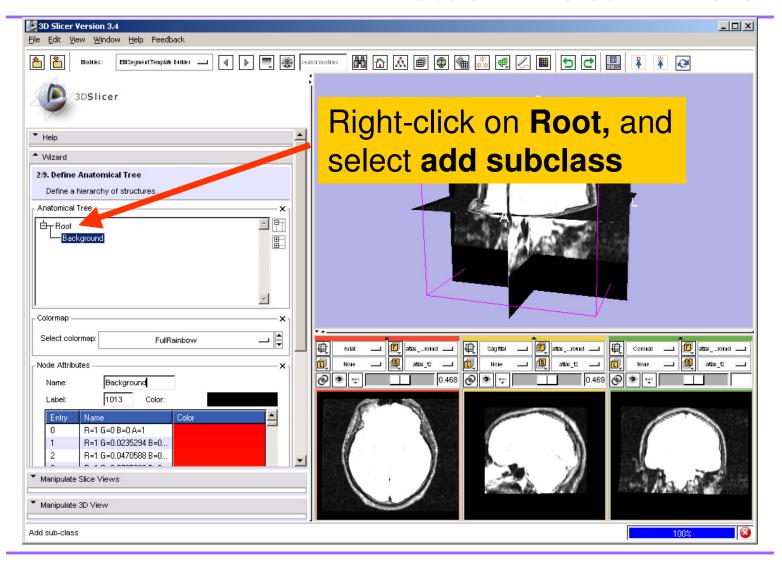


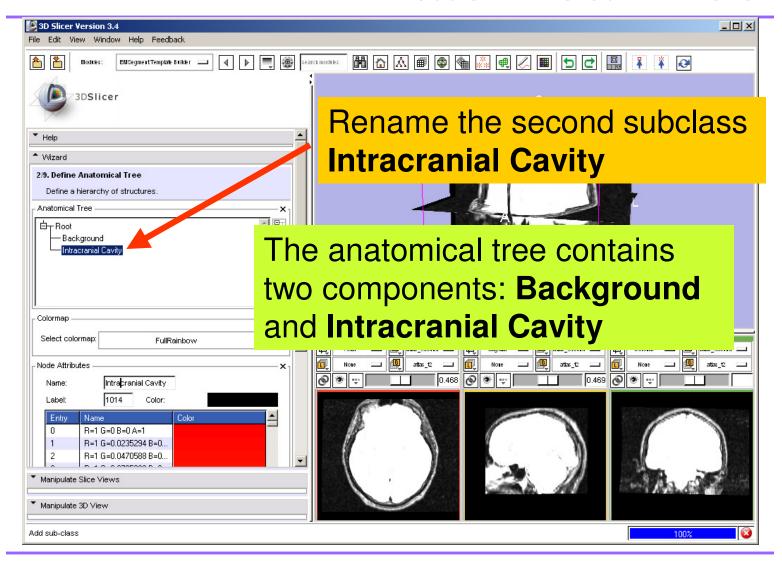
Template Builder

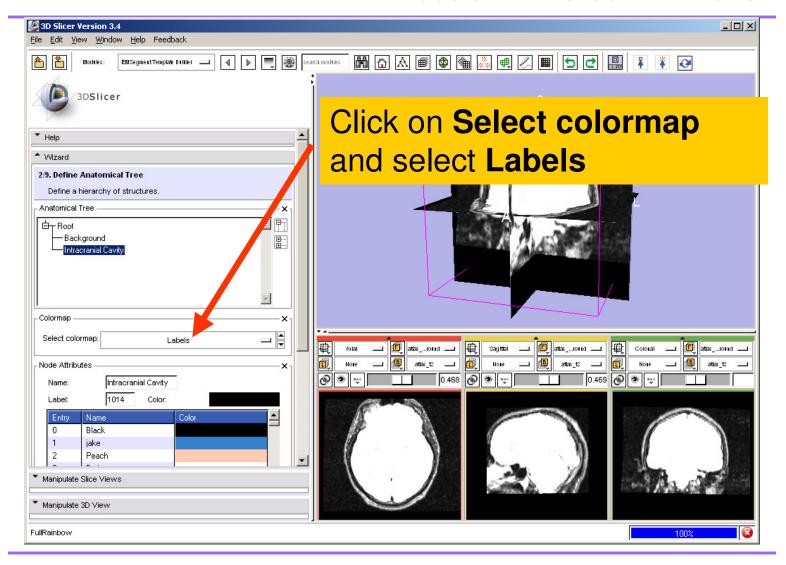


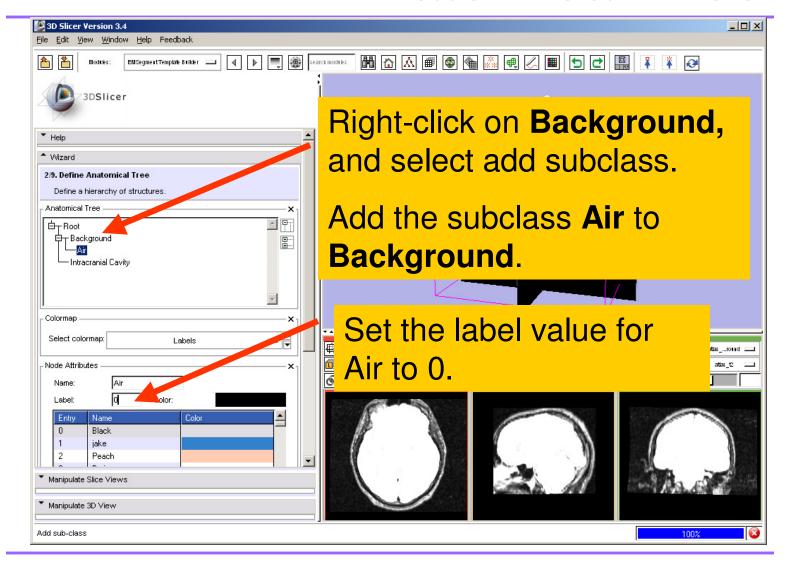


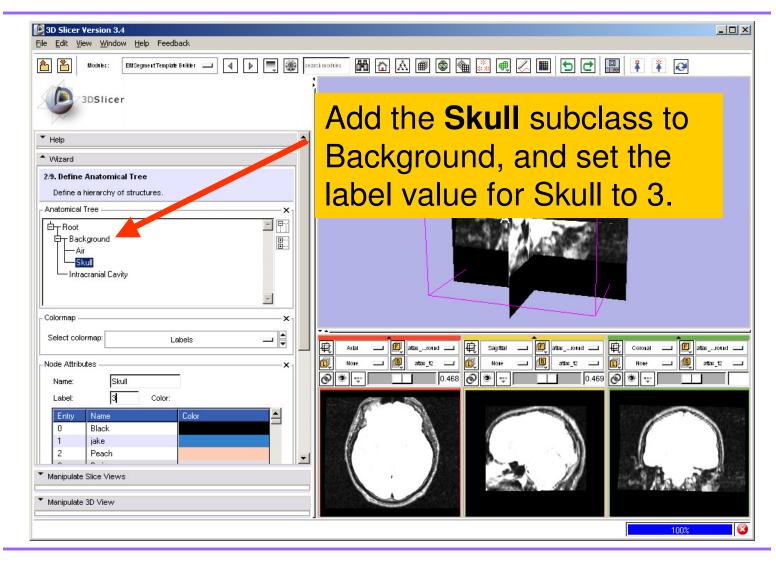


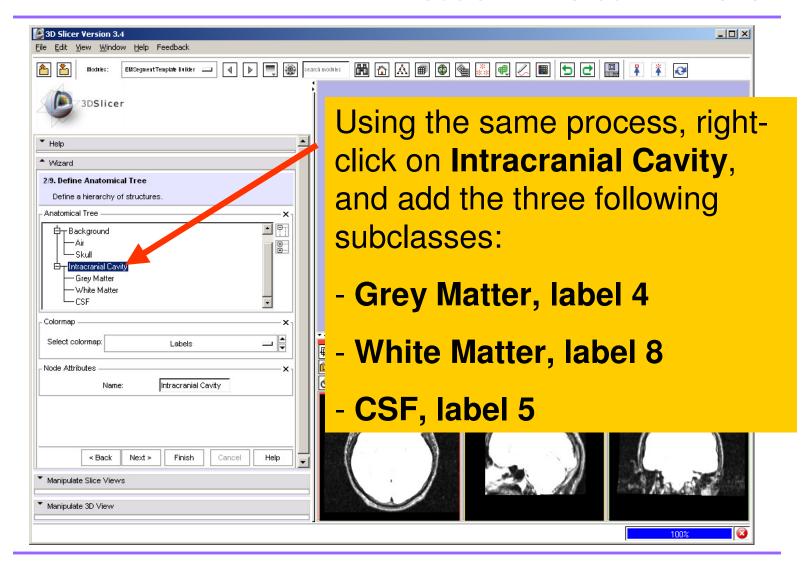


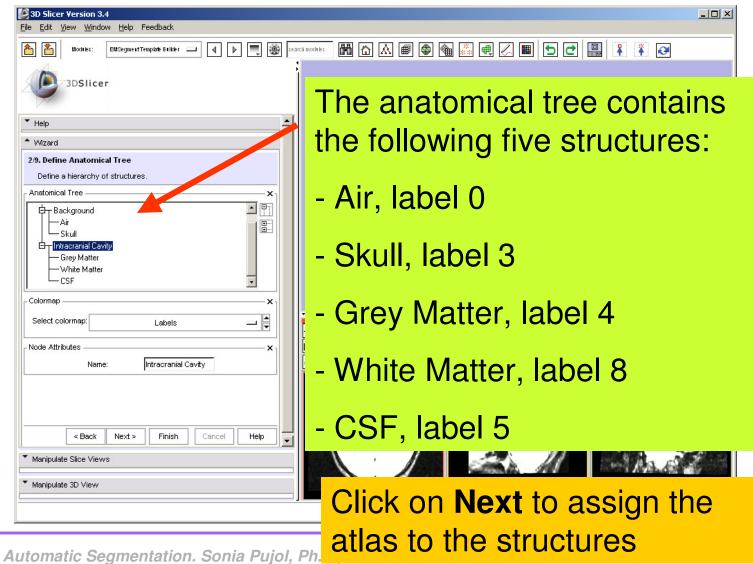




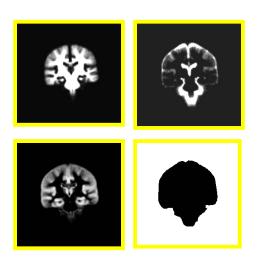


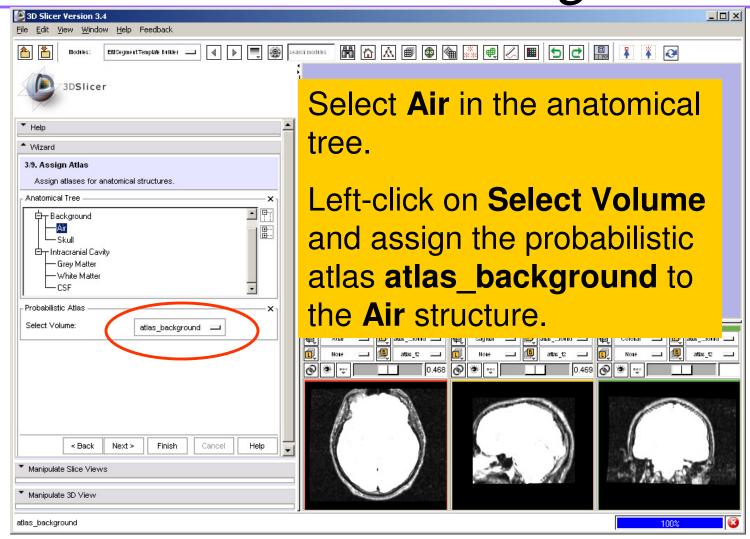


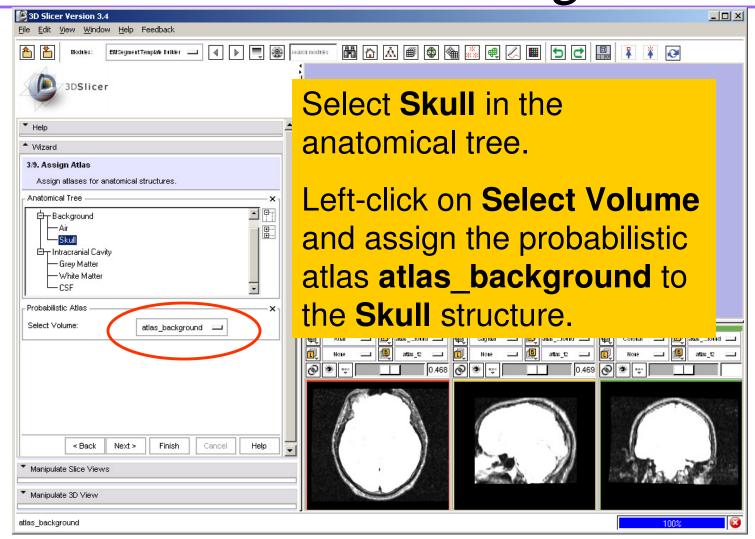


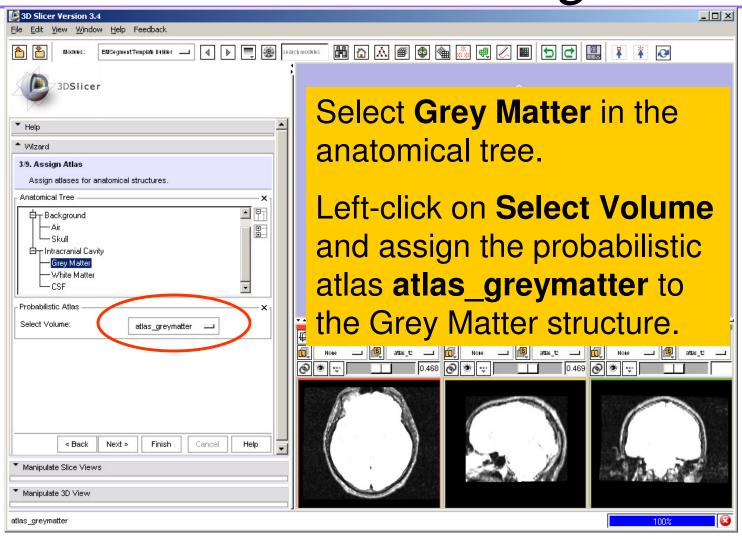


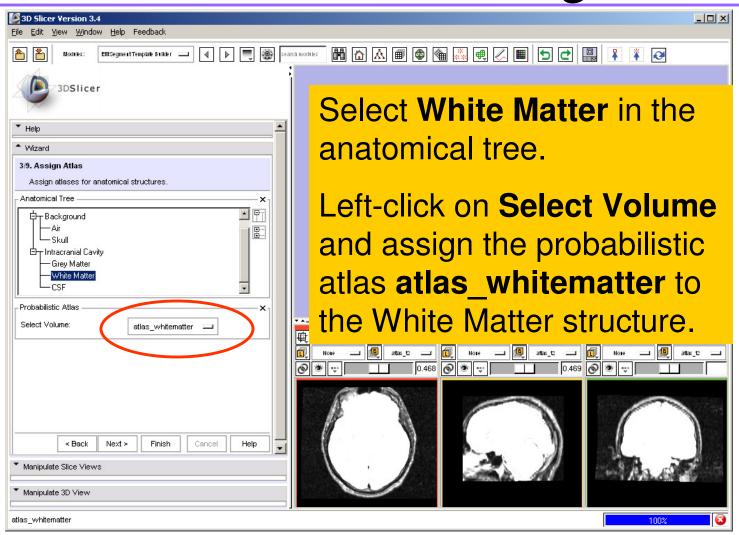
National Alliance for Medical Image Computing

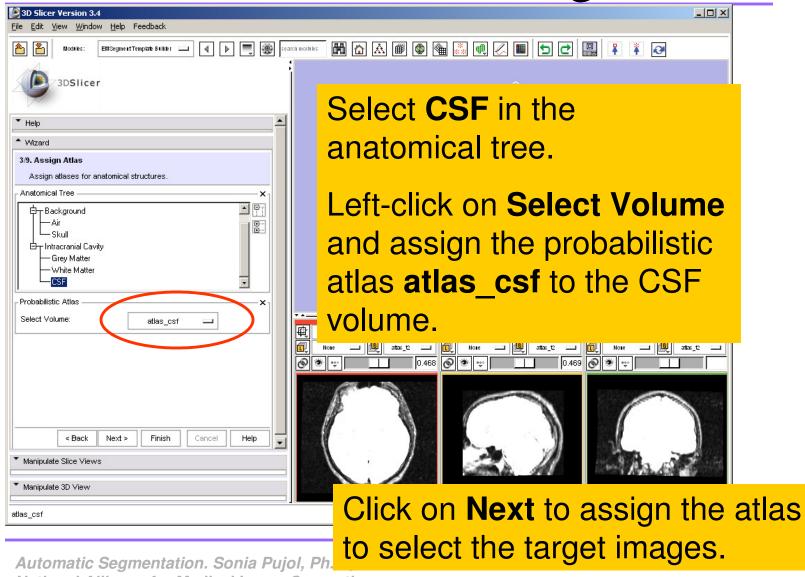




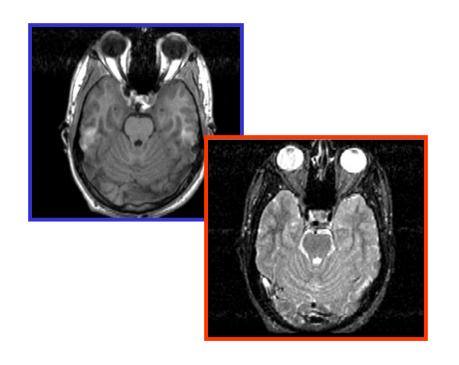


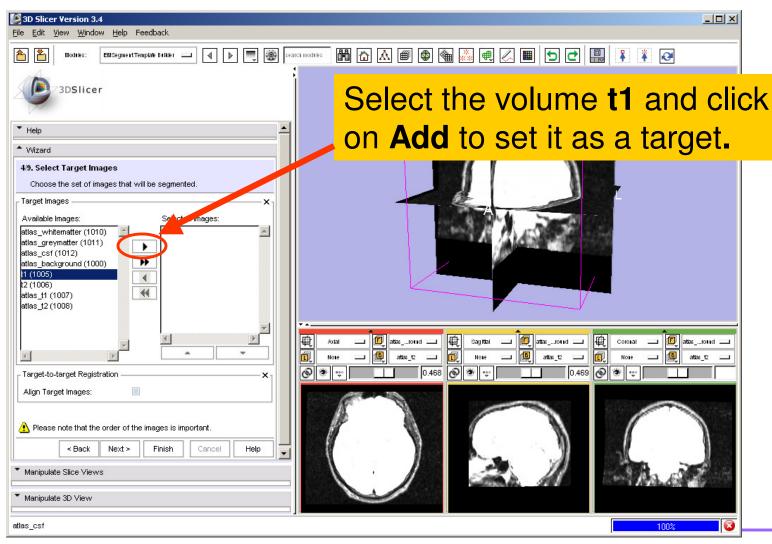




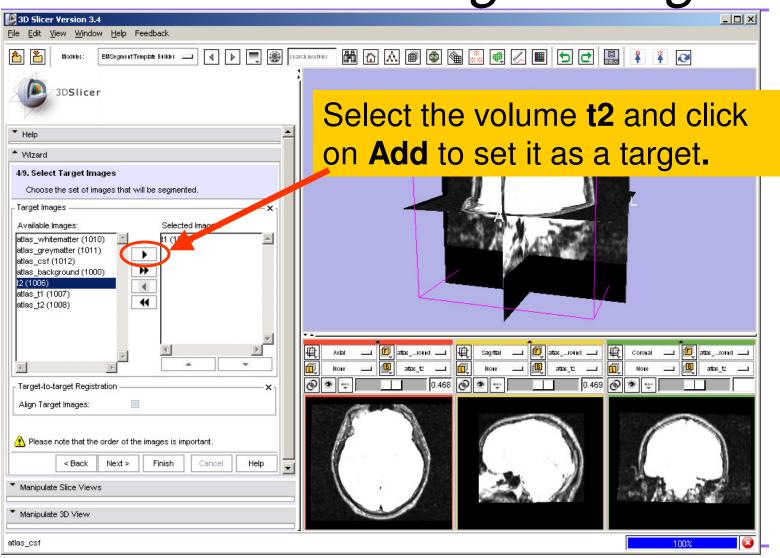


National Alliance for Medical Image Computing

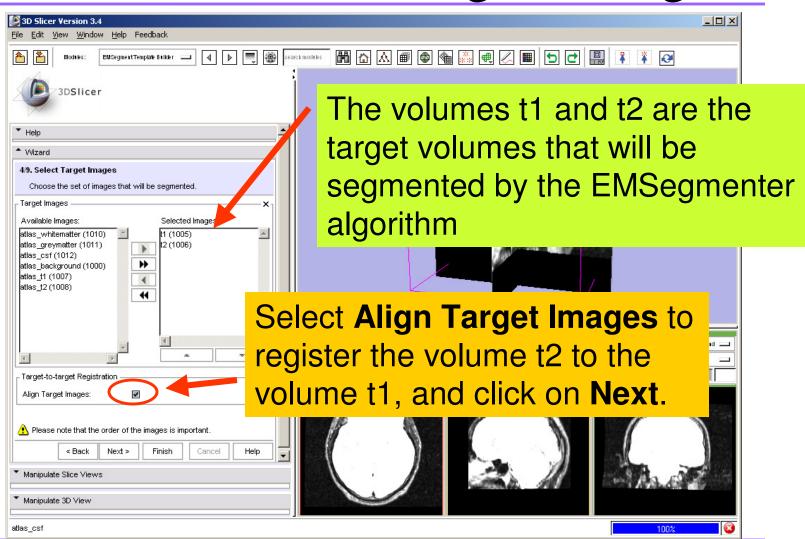


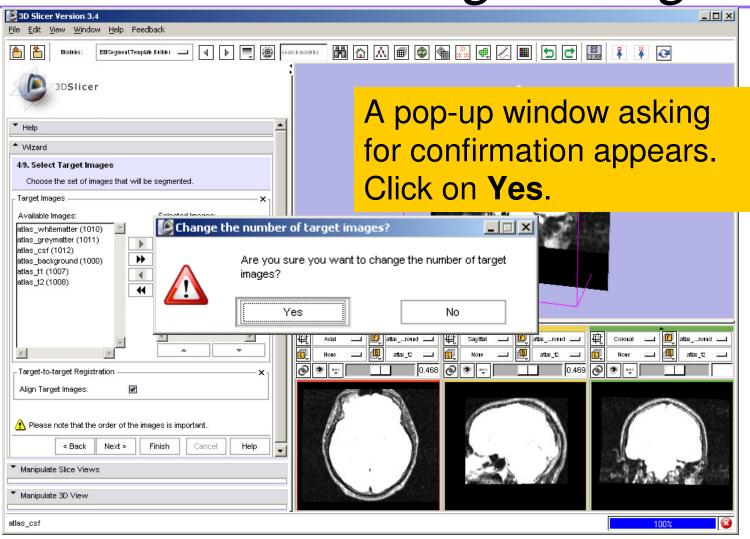


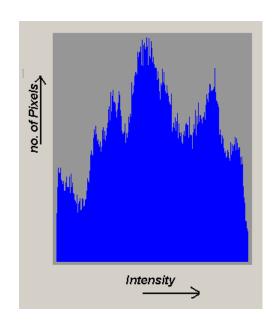
Automatic Segmentation. Sonia Pujol, Ph.D., Harvard Medical School National Alliance for Medical Image Computing



Automatic Segmentation. Sonia Pujol, Ph.D., Harvard Medical School National Alliance for Medical Image Computing

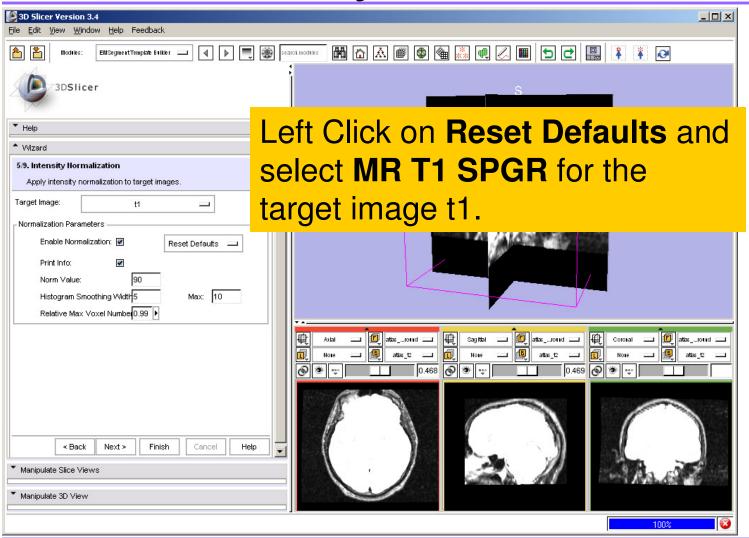




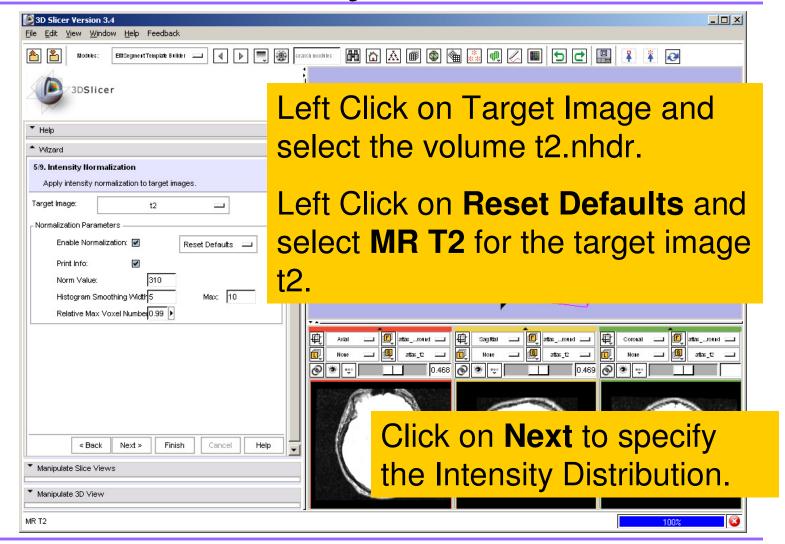


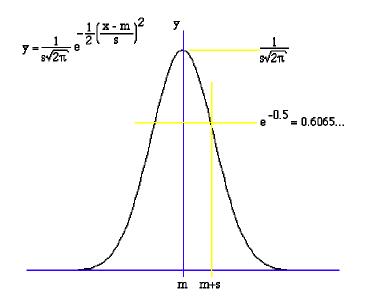
Intensity Normalization

Intensity Normalization



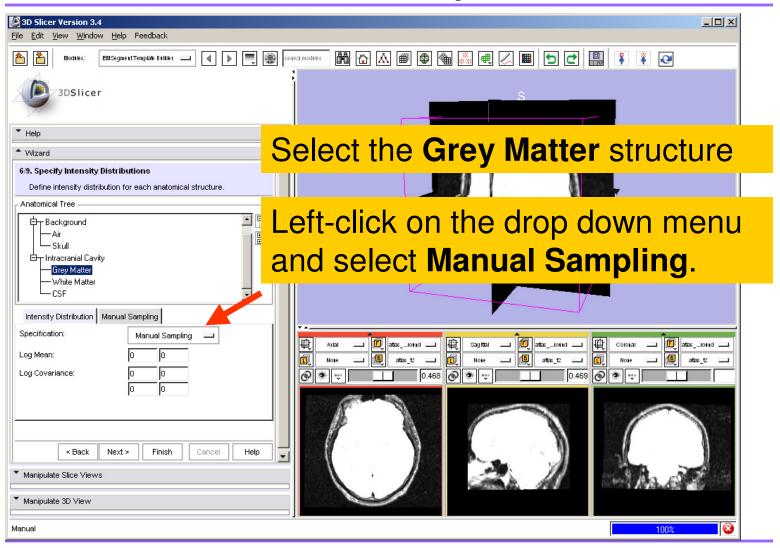
Intensity Normalization



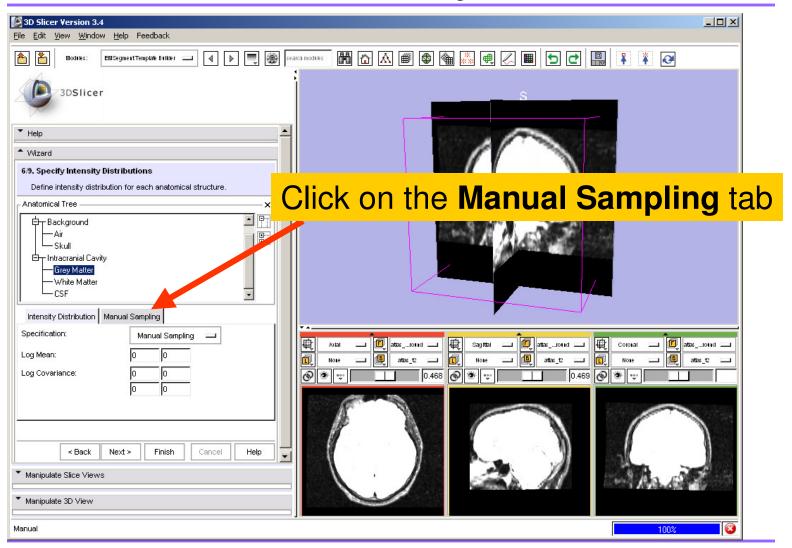


Intensity Distribution

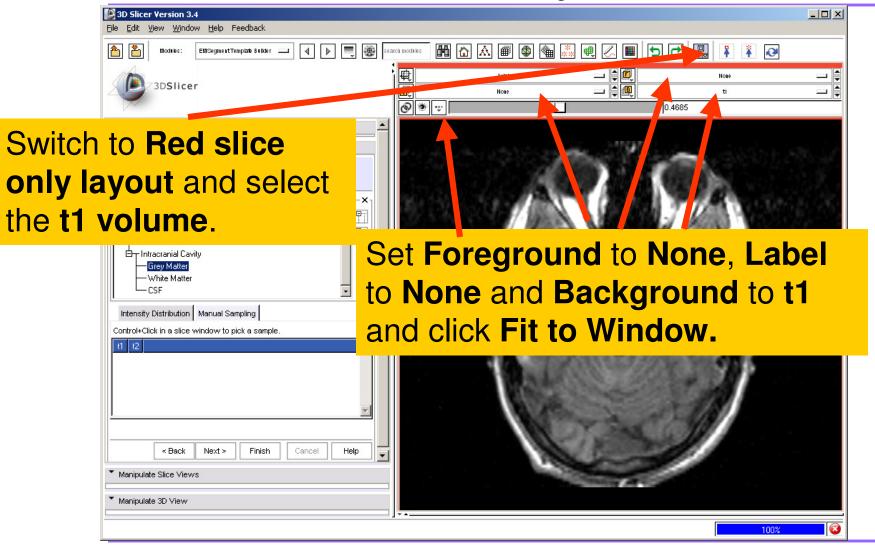
Gaussian Intensity Distribution

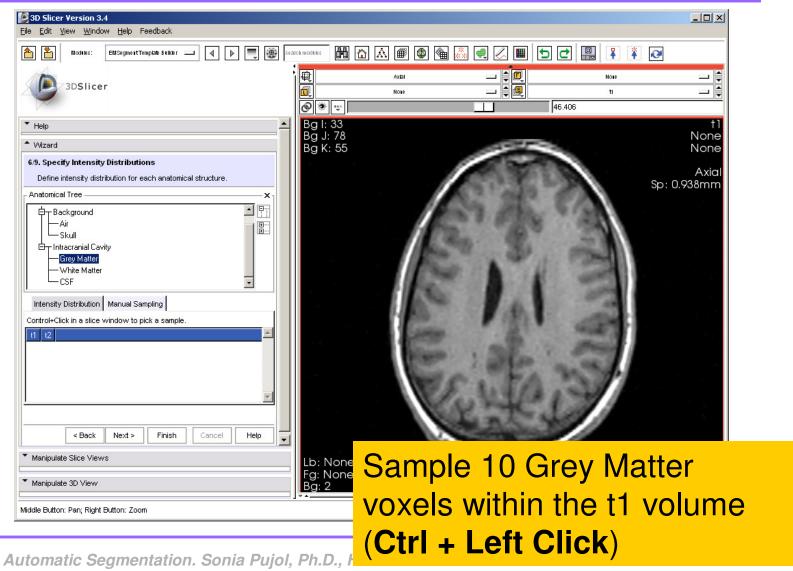


Gaussian Intensity Distribution

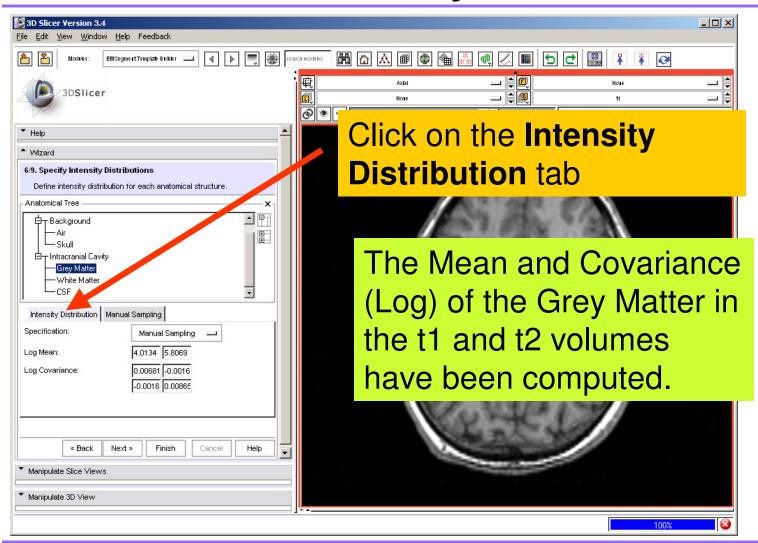


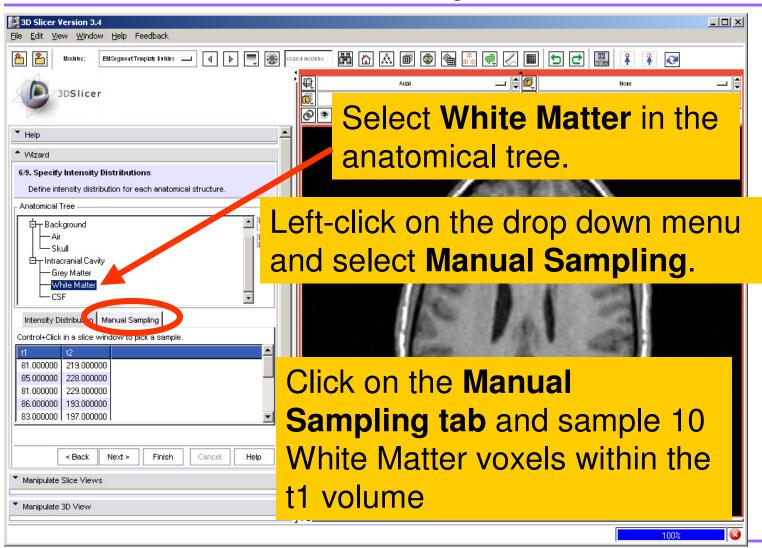
Gaussian Intensity Distribution

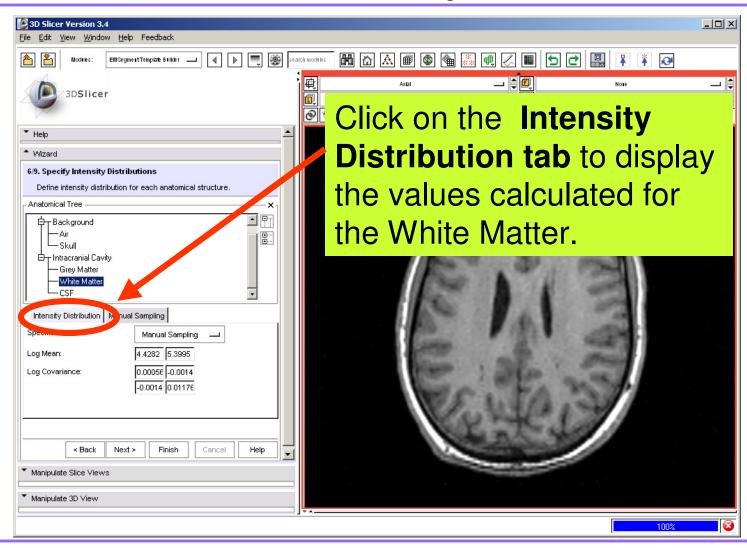


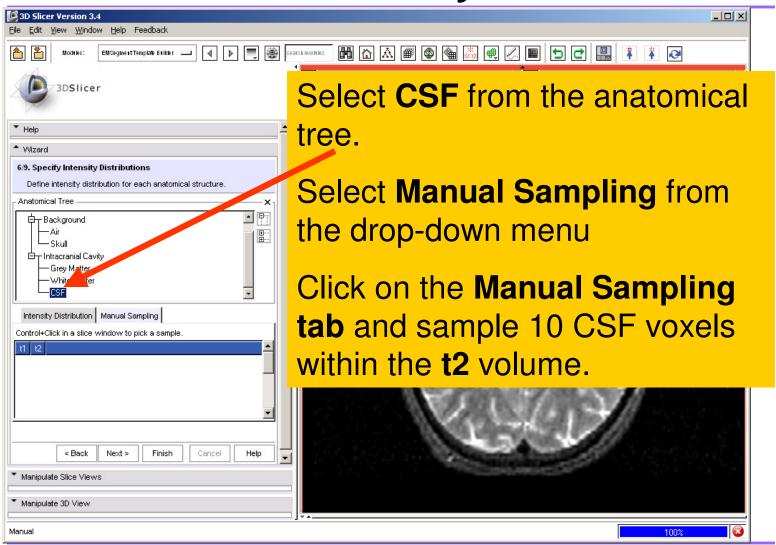


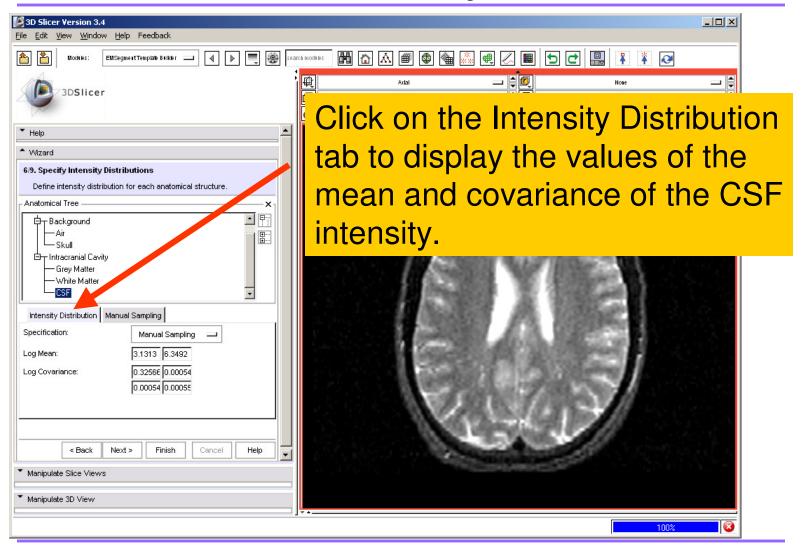
National Alliance for Medical Image Computing

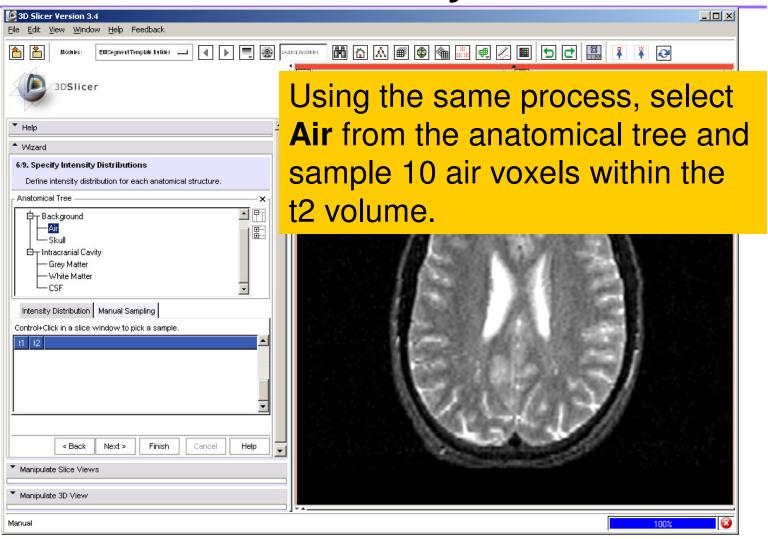


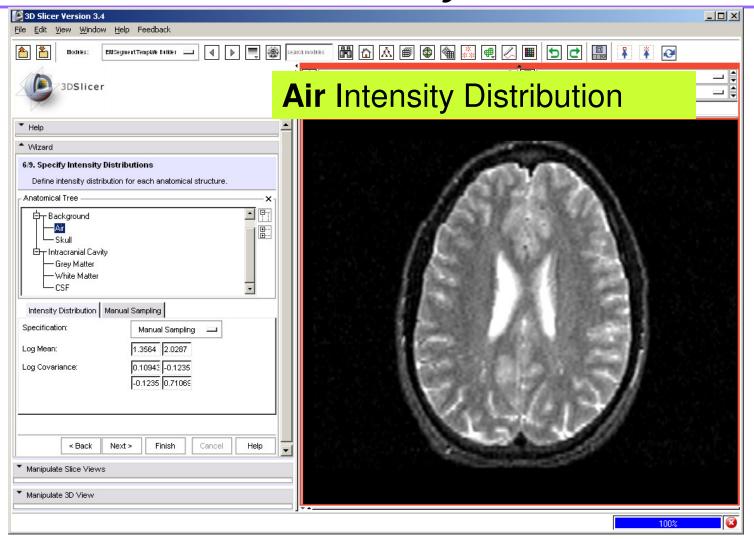


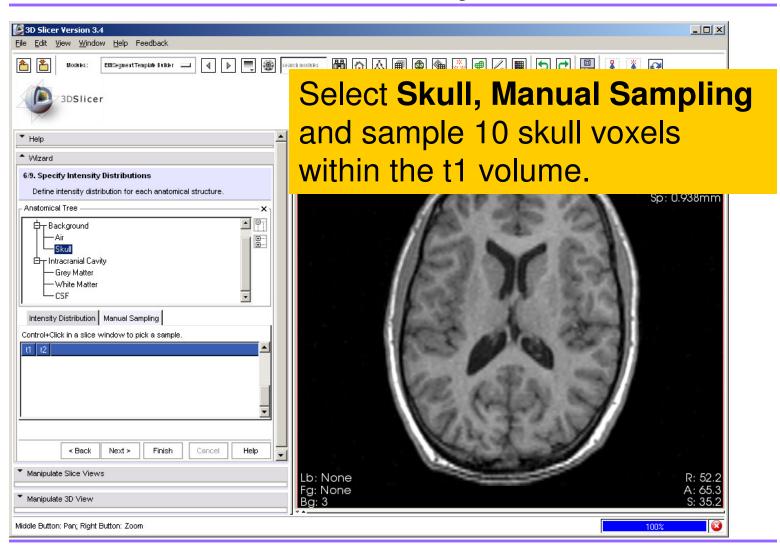


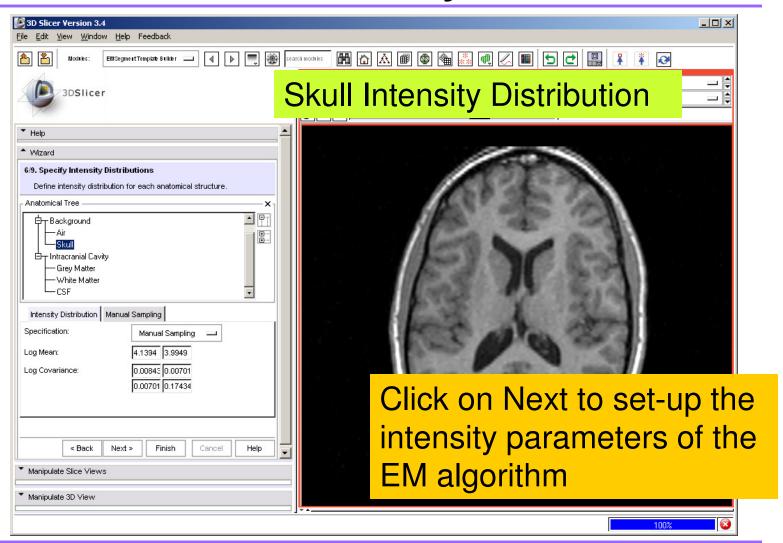


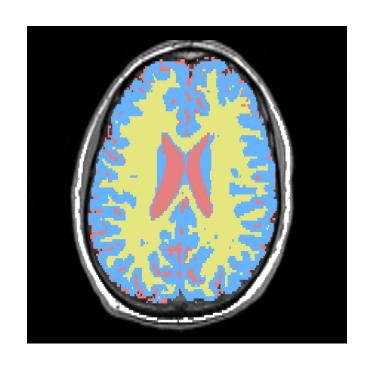










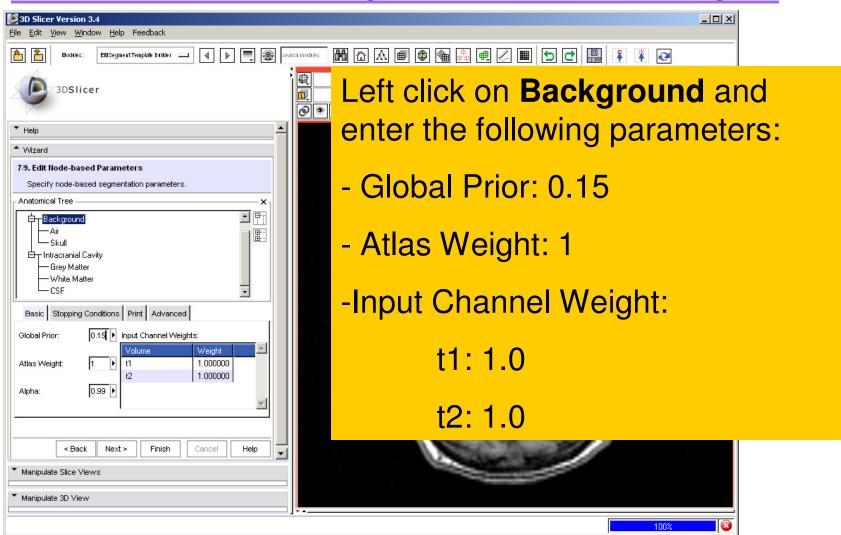


EM Input Parameters

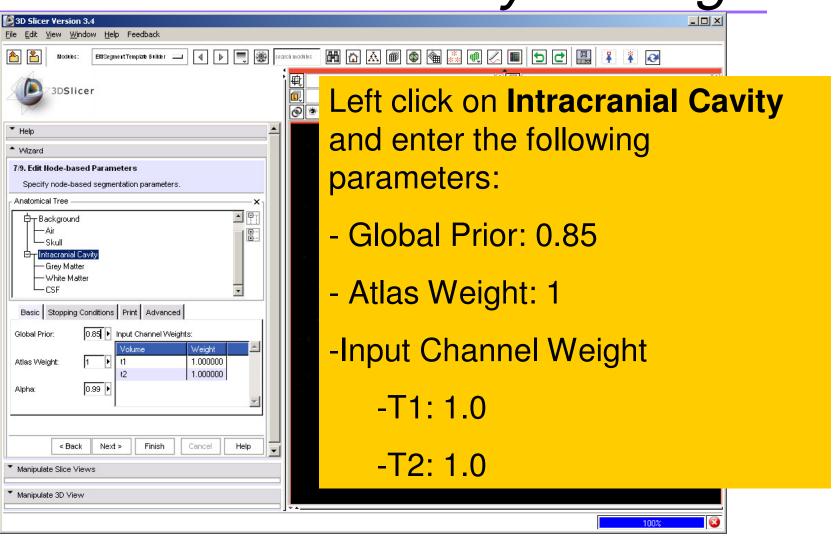
EM Segmentation parameters

- Global Prior p(L) → Global Prior Weight
- Gaussian Intensity Distribution p(L|I) → Input Channel Weight
- Probabilistic Atlas p(L|X) → Atlas Weight

Background Settings



Intracranial Cavity Settings



Air and Skull settings

Global Prior: p(L) = 0.7

.7

Enter the following

parameters for Air and

Skull

Air

Atlas Weight: p(L|X) = 1

Input Channel Weight: t1, p(L|I) = 1.0

t2, p(L|I) = 1.0

Skull

Global Prior: p(L) = 0.3

Atlas Weight: p(L|X) = 1

Input Channel Weight: t1, p(L|I) = 1.0

t2, p(L|I) = 1.0

Intracranial Cavity

GM

Global Prior: p(L) = 0.45

Atlas Weight: p(L|X) = 0.01

Input Channel Weight: t1, p(L|I) = 1.0 WM and CSF.

t2, p(L|I) = 0.1

WM

Global Prior: p(L) = 0.3

Atlas Weight: p(L|X) = 0.7

Input Channel Weight: t1, p(L|I) = 0.95

t2, p(L|I) = 0.05

CSF

Global Prior: p(L) = 0.25

Atlas Weight: p(L|X) = 0.01

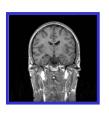
Input Channel Weight: t1, p(L|I) = 0.1

Click on Next.

Enter the following

parameters for GM,

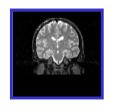
Automatic Segmentation. Sonia Pujol, Ph.D., Harvald Inducal School

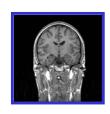


Atlas To Target Registration

EM Pipeline: Patient-Specific Atlas Generation

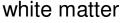
Registered Normalized Patient data





t1n

Generic atlas



csf

grey matter

background

Atlas to target registration

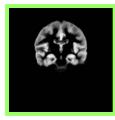
Register the generic atlas to the images to create the patient-specific atlas

Patient-specific atlas

Anatomical Guided Segmentation with non-stationary tissue class distributions in an expectation maximization framework. Pohl K., Bouix S., Kikinis R. and Grimson E. In Proc.ISBIT 2004: IEEE International Symposium on Biomedical Imaging:From Nano to Macro, pp 81-84

white matter

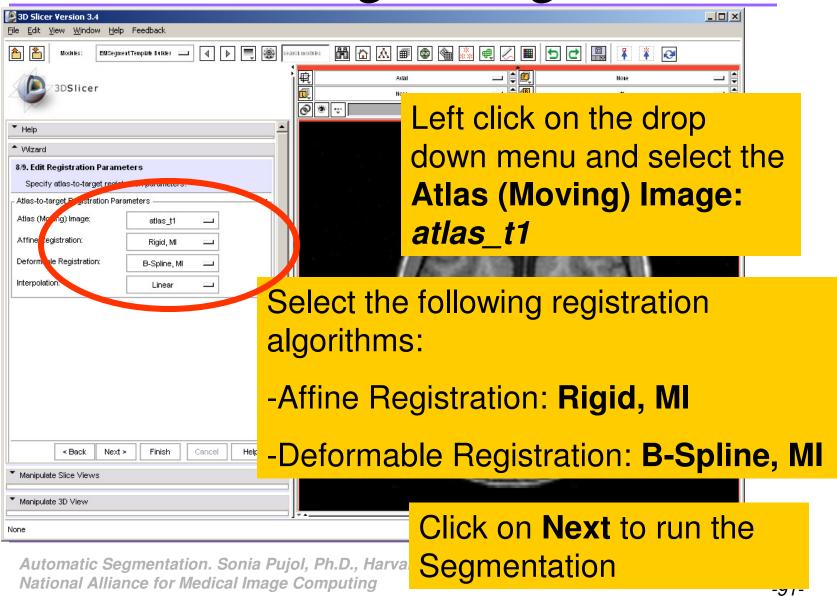
csf



grey matter

background

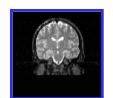
Atlas To Target Registration



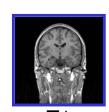


EM Pipeline: Segmentation

Normalized Patient data



T(t2) normalized



normalized

white matter

Patient-specific atlas

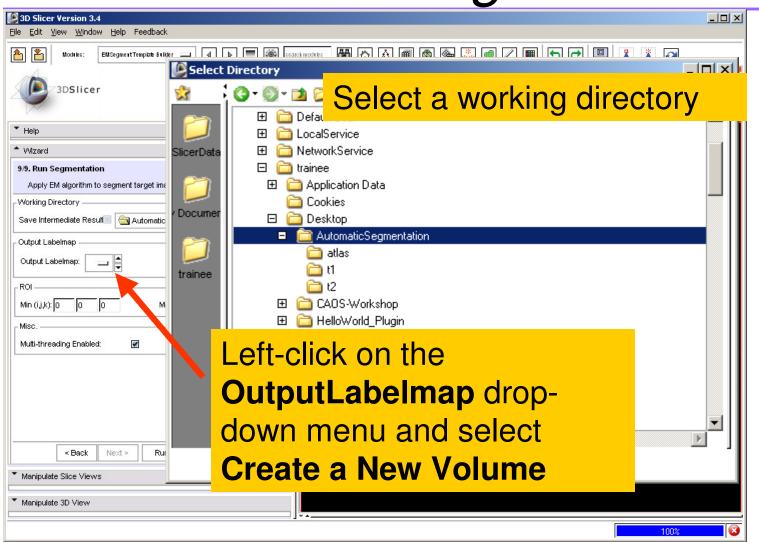
csf

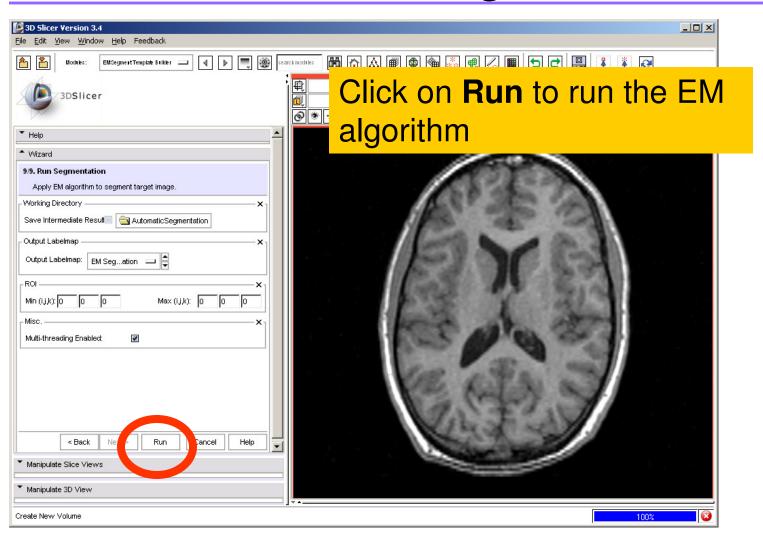
grey matter

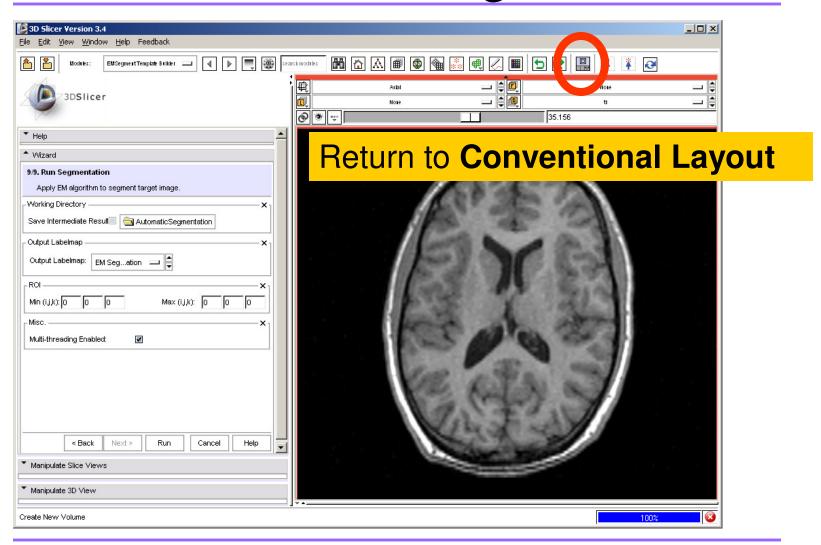
background

Anatomical Guided Segmentation with nonstationary tissue class distributions in an expectation maximization framework. Pohl K., Bouix S., Kikinis R. and Grimson E. In Proc.ISBIT 2004: IEEE International Symposium on Biomedical Imaging:From Nano to Macro, pp 81-84

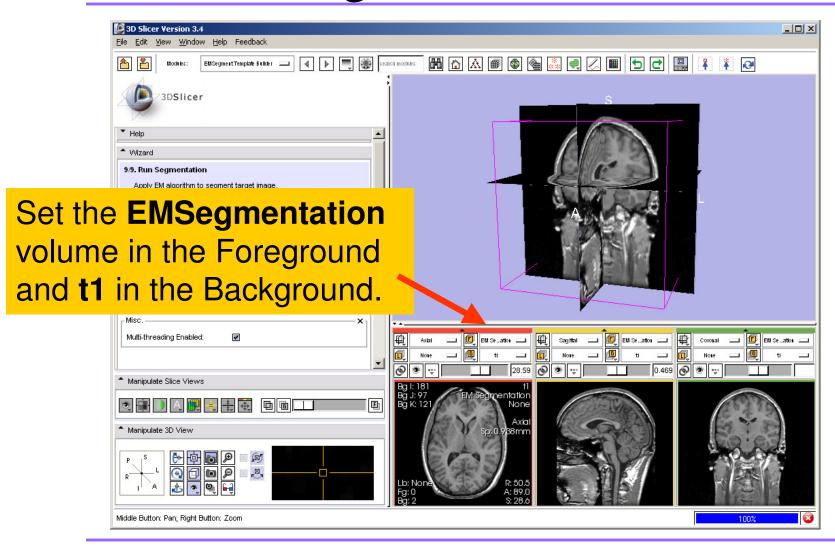
Segment using the Expectation Maximization algorithm



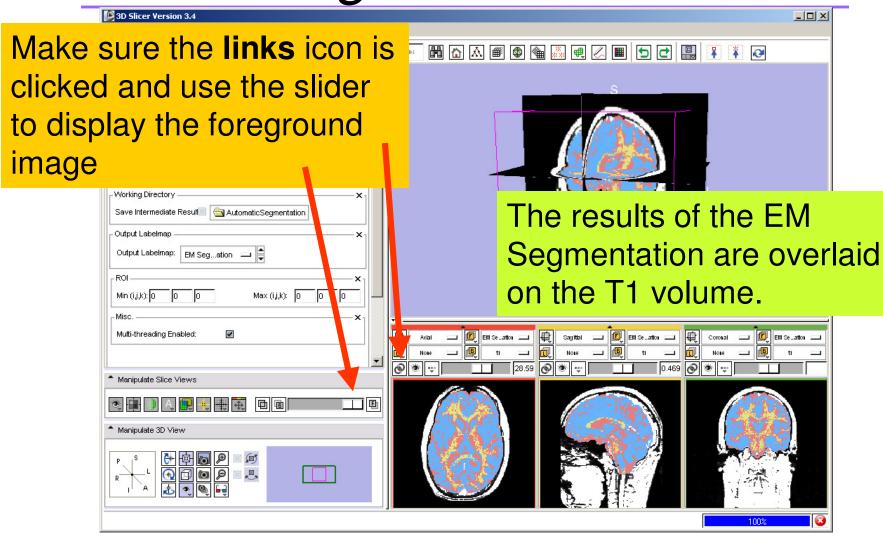




Segmentation Results



Segmentation Results



Acknowledgments

National Alliance for Medical Image Computing

NIH U54EB005149

Thanks to Kilian Pohl, Brad Davis, Sylvain Bouix and Robert Yaffe.

Neuroimage Analysis Center

NIH P41RR013218

Computer Science and Artificial Intelligence Lab-MIT, Surgical Planning Lab-Harvard Medical School

Thanks to Sandy Wells, Martha Shenton, Alex Guimond, Simon Warfield and Eric Grimson.