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The most common test for prostate cancer (known as PSA
screening) misses aggressively growing prostate tumors—the
type typically seen in young patients. It’s a fact that was accept-

ed by the medical establishment in 2004 only after a seven-year study
of 9000 men appeared in the New England Journal of Medicine. But
Kristin Swanson, PhD, predicted the test’s inadequacy in 2001
using a single differential equation—a “back of the napkin calcula-
tion” that “a high school student could answer.”   This is the type of
powerful insight that mathematics can offer cancer biology, says
Swanson, who is an assistant professor of pathology and applied
mathematics at the University of Washington. 

Unfortunately, mathematics has remained largely untapped and
under-appreciated in cancer biology. Though mathematicians have
been deriving formulas about cancer for decades, their work has
been confined to mathematical and theoretical biology journals—a

set of dense journals that the average biologist doesn’t read.
Biologists are also skeptical: How can cancer, which is so complex
and unpredictable, be reduced to a set of neat equations? 

But cancer biology may be at a turning point. Never before has
there been a greater need for the field to embrace mathematics and
computation. As biological data pile up at an astonishing rate, there
is growing recognition that only quantitative approaches can pull it
all together. As a result, quantitative cancer models are slowly mak-
ing their way out of the theoretical and math journals and creeping
into mainstream cancer biology. Leading biology journals like Cell
and Cancer Research now contain theory sections. And, in 2003, the
NIH established the Integrative Cancer Biology Program—which
now funds nine inter-disciplinary centers that are applying quantita-
tive modeling and systems biology approaches to cancer (the ICBPs). 

transforming
fight cancer

How mathematical models are transforming   
the fight against cancer
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These efforts promise enormous pay
off. Modeling can streamline wet-lab
experiments; give scientists deeper insight
into how tumors develop, grow, and
spread; and even predict a patient’s prog-
nosis and optimal treatment regimen.

“Biologists tend to think of model-
ing as some sort of magical thing or
black art,” says professor Philip K.
Maini, PhD, director of the Center for
Mathematical Biology at Oxford
University. “But we haven’t done any-
thing extra; we haven’t done any jiggery-
pokery or put any voodoo in there.”

Mathematicians simply translate biol-
ogist’s hypotheses into a formal set of
testable equations, he says. 

“Biologists are the first people to tell
us that biology is very complicated; it’s
highly non-linear. Yet biologists use ver-
bal reasoning, which is linear reasoning,
which is the wrong model,” he says.
Mathematical models are needed to
reach beyond where human intuition
and linear thinking can take us, he says. 

What follows are some examples of how
modeling is adding insight to intuition—
from cancer initiation to metastasis and
from the molecular to the patient level.

A CANCER CELL IS BORN:
THE SUBCELLULAR LEVEL
Cancer arises through a series of

genetic changes. Mutations in proto-
oncogenes allow cells to grow and divide
without the need for normal growth sig-
nals, and mutations in tumor suppressor
genes allow cells to evade normal checks
and balances—such as anti-growth signals
and programmed cell death (apoptosis).
Mutations in genes that detect and
repair DNA damage facilitate the
process by upping a cell’s mutation rate. 

Stochastic mathematical models help
investigators test hypotheses about how
cancer mutations accumulate. For exam-

ple, Natalia Komarova, PhD, associate
professor of mathematics at the
University of California, Irvine, models
the initiating event in colon cancer—the
inactivation of the APC tumor suppres-
sor gene. Normally, APC causes cells to
enter apoptosis at the end of their
“term” in the colon tissue, which helps
prevent cancer. 

Cells in the colon are constantly
exposed to the elements, and thus have
a high risk of mutation. Thus, it is
imperative that colon cells turn over
quickly. The bottom of each microscop-
ic pit of colon tissue (called a crypt) con-
tains adult stem cells whose job is to pro-
duce daughter cells to continually
replenish the colon. These daughter
cells climb up the crypt, differentiate
into colon cells, and die off in about a
week. It is a delicate balance, however:
the quick turnover helps prevent cancer
in the daughter cells, but the frequently
dividing stem cells are vulnerable to
accumulating mutations. 

One question that cannot be reliably
answered experimentally is how many
stem cells are in each crypt. Komarova
tries to answer this question mathemati-
cally—by calculating the optimal number
to minimize a person’s chance of getting
mutations in the APC gene.

“A situation like this is perfect for
the application of modeling because in
the model we can assume that there is
one stem cell or that 50 percent of
them are stem cells and we can see what
happens,” Komarova says. It turns out
that, for young people, having many
stem cells minimizes the chance of 
cancer. But for older individuals, 
having a few stem cells is the best 
strategy. Likely, evolution favored the
optimal strategy for young people, since
evolution acts on those of reproductive
age, she says. 

Besides probabilistic models of muta-
tion “hits,” other researchers model the
signaling pathways involved in growth,
anti-growth, and cell death. Typically,
these models consist of systems of ordi-
nary differential equations. Each equa-
tion describes the rate of change in the
concentration of a particular enzyme,
substrate, receptor, or signaling mole-
cule as a function of its production,
degradation, and reaction with other
network players.  

For example, Galit Lahav, PhD,
assistant professor of systems biology at
Harvard Medical School, models the
p53 signaling network. p53 is a tumor
suppressor gene that plays a crucial role
in apoptosis, among other important
anti-cancer functions. If specialized sen-
sors in the cell detect DNA damage (or
other dangers, such as oncogene over-

“Biologists tend to think of modeling as some sort of magical thing or
black art,” says Philip K. Maini, “But we haven’t done anything extra;

we haven’t done any jiggery-pokery or put any voodoo in there.”

DNA-Damage Control. When cells are
exposed to DNA-damaging radiation, they
produce p53, an anti-cancer protein that
causes damaged cells to undergo apoptosis
(programmed cell death).  Here, cells
express fluorescently tagged p53 (green)
and Mdm2 (red) following gamma irradia-
tion. Time-lapse microscopy shows that, fol-
lowing DNA damage, p53 and Mdm2 levels
undergo a series of pulses that vary in num-
ber from cell to cell. Courtesy of Galit
Lahav's lab, department of Systems Biology,
Harvard Medical School.
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ential equations to predict the changing
levels of p53 and related proteins, such
as Mdm2, which is involved in a negative
feedback loop that regulates p53. 

“The idea of the models is to help us
predict how the network will behave in
response to different treatments and to
suggest new experiments,” she says.

For example, she discovered that lev-
els of p53 oscillate following gamma irra-
diation, and she is using modeling to
help understand these oscillations. If
they are important for apoptosis, then
some cancer drugs may work better if
delivered in pulses rather than continu-
ously, she says.

expression), they trigger p53 to initiate a
cascade of events leading to the cell’s
death. More than half of all human can-
cers contain a mutation in p53, making
it the most common cancer mutation. 

Lahav studies the p53 network both
experimentally and theoretically. “We go
back and forth from the bench to the
computer,” she says.

In the lab, Lahav uses fluorescence
microscopy to measure the changing lev-
els of p53 and other proteins of interest
(all tagged with fluorescent markers)
after a cell is exposed to DNA-damaging
gamma radiation. On the theoretical
side, she uses a series of ordinary differ-

THE GROWING TUMOR: 
THE CELLULAR LEVEL

Once tumor cells have acquired the
ability to propagate unchecked, they
grow into a small ball of cells—which
mathematicians model as a growing
spheroid. Initially, the tumor feeds on
oxygen and nutrients that diffuse to its
surface. But these supplies cannot pen-
etrate deep into the tumor, so cells in
the core become dormant or die of
starvation. The limited nutrient supply
curbs the tumor’s growth to about half
a millimeter in diameter—and if the
story ended here, the tumor would be
harmless.

Virtual Angiogenesis. In these snapshots from a computer simulation of tumor growth and angiogenesis, the top panels show the presence
and density of tumor cells at time=5; cells in the core of the tumor become quiescent because oxygen cannot reach them. As the tumor
grows, tumor cells secrete angiogenesis factors that cause new blood vessels to grow and supply extra oxygen and red blood cells to the
tumor (bottom panels). Courtesy of Philip K. Maini.
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Unfortunately, as cells in the center
become starved of oxygen (hypoxic), they
release chemicals that stimulate angio-
genesis—the growth of new blood vessels.
These chemicals encourage blood vessel
cells (endothelial cells) to migrate toward
the core of the tumor and supply it with
blood. Now the hungry tumor can feed
unhindered. At the same time, the
tumor gains a connection to vessels
throughout the body, giving it an escape
route for metastasis. 

One strategy for modeling angiogene-
sis is to set up systems of partial differ-
ential equations that describe how the
tumor and vasculature are changing in
both time and space (how their shapes
are changing). For example, Zvia Agur,
PhD, President of the Institute for
Medical BioMathematics in Israel, has

vidual tumor, Agur simulated its expect-
ed growth in the computer and then
compared the simulation results to the
actual results from the lab—and the pre-
diction was quite good, she says. 

She then simulated what would hap-
pen if tumors were treated with anti-
angiogenesis drugs, and got a surprising
result: The model showed that treat-
ment with a single anti-angiogenesis
drug is not sufficient to eliminate a
tumor; rather, combinations of anti-
angiogenesis drugs are needed. 

“At the time, the anti-angiogenesis drug
Avastin was very much in the news, and
people thought that it could be used on its
own,” Agur says. “Genentech was doing
extensive clinical trials using Avastin
monotherapy, and it took them another
year or so to realize that we were right.”

modeled angiogenesis using three inter-
connected modules of partial differen-
tial equations. Her equations describe:
the changing volume of tumor cells
(which depends on factors such as oxy-
gen concentration); the changing vol-
ume of immature blood vessels (which
depends on how quickly tumor cells
release VEGF, a potent angiogenesis fac-
tor); and the changing volume of mature
blood vessels (which depends on molec-
ular signals that promote maturation).
“The simplest model we could make was
quite complex,” Agur says. 

She also set up an experimental sys-
tem to validate her model. Her team
implanted small balls of ovary cancer
cells into mice and measured changes in
the size and shape of the tumors and the
blood vessels using MRI. For each indi-

Forecasting Invasion. This graphic depiction of a mathematical model developed by Vito Quaranta and Alexander Anderson predicts
whether a tumor will become invasive. The tumor is represented on a two-dimensional grid. Each virtual cell is accounted for on the grid
and its behavior (e.g., growth, movement, death) is tracked based on mathematical functions and partial differential equations. Solving
these equations in sequential time-steps generates a computer simulation of tumor growth and invasion. This approach has the poten-
tial to predict disease outcome based on precise quantities measured in the tumor of a specific patient. The model was described in:
Anderson et al. Cell. 2006 Dec 1;127(5):905-15. Courtesy of the journal Cell. Graphic by Dominic Doyle.
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INVASION AND METASTASIS:
THE TISSUE LEVEL

For a while, the tumor continues to
grow as a cohesive ball of cells with
smooth edges. At this point, the tumor
is still often curable, as a surgeon can
just scoop it out, says Vito Quaranta,
MD, professor of cancer biology at
Vanderbilt University and also principal
investigator of the Vanderbilt Integrative
Cancer Biology Program (one of the
nine ICBPs).

But, eventually, some rogue cells
break away from the growing tumor and
invade the local tissue. To become inva-
sive, tumor cells have to pick up certain
abilities—they must escape cell-to-cell
adhesion, migrate along the extracellular
matrix (the surrounding connective tis-
sue), and secrete enzymes that digest the
extracellular matrix.

Eventually, these invading cells bur-
row their way into the blood or lymph
systems and spread (metastasize) to dis-
tant sites, where they seed new tumors.
Now it is impossible to just reach in and
scoop out the tumor—and the cancer is
much more deadly. 

Quaranta, who is an experimentalist,
collaborates with mathematician
Alexander Anderson, PhD, senior lec-
turer of mathematics at the University of
Dundee in Scotland, to model the
process of invasion. They use a “hybrid
discrete-continuum” model, which
means molecules and proteins—such as
oxygen and matrix-degrading enzymes—
are modeled as continuous densities,
but cells are modeled as individual, dis-
crete entities that make autonomous
decisions. Such agent-based models are
computationally intensive, so simula-
tions are limited to about five million
cells (in contrast, a tumor may have a few
billion cells).

Cells move on a two-dimensional grid
that represents the changing micro-envi-
ronment—including the concentrations
of nutrients, enzymes, and extracellular
matrix proteins. Cells have a certain prob-
ability of moving to each adjacent point
on the grid (called a biased random walk).
For example, cells are more likely to move
to regions where oxygen levels are high.
Cells are also allowed to adhere to each
other, migrate, degrade their surrounding
tissue, divide, even die, according to cer-

Cancer Invasion. Starting with only 50 cancerous cells, this mathematical simulation shows
how a tumor grows first into a smooth ball of non-invasive cells and then—under the right
conditions—into an invasive mass that fingers into the surrounding environment. Blue cells
are highly aggressive; orange cells are less aggressive, and brown cells are dead.  
Courtesy of Alexander Anderson

Virtual Tumor. A simulation of one half of the whole living tumor cell population (outer half
sphere) and the complete necrotic (dead) tumor cell population (inner sphere). Coloration
relates to cell-adhesion value—cells on the outer surface of the tumor all have zero cell-to-
cell adhesion. Courtesy of Alexander Anderson
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THE INTEGRATIVE CANCER 
BIOLOGY PROGRAM

Established by the National Cancer Institute in 2003, the Integrative
Cancer Biology Program (ICBP) funds efforts in computational model-
ing and systems biology approaches to cancer.  “It’s difficult to do this
type of research because you have to do both experimental biology
and sophisticated computational approaches. Pulling those kinds of
groups together really requires a structure like a center,” says
Jennifer Couch, PhD, IT/Computational Biology Coordinator for the
ICBPs. “Our vision is always that these centers will sort of form the
locus for the development of a community focused on integrative
cancer biology.” Currently, the ICBP funds nine centers:

Todd Golub, M.D., Dana-Farber Cancer Institute, 
Boston, Mass.
Identifying protein kinase signatures in cancer.

Joe W. Gray, Ph.D., Lawrence Berkeley National
Laboratory, Berkeley, Cailf.
Modeling signaling networks to identify patients for tar-
geted therapeutics.

Tim H-M Huang, Ph.D., Ohio State University, 
Columbus, Ohio.
Epigenetic changes in cancer genomes.

Timothy Kinsella, M.D., University Hospital of
Cleveland, Cleveland, Ohio.
Modeling mismatch repair defective malignancies.

Sylvia Plevritis, Ph.D., Stanford University School of
Medicine, Stanford, Cailf.
Regulatory and signaling pathways in neoplastic trans-
formation.

Joseph Nevins, Ph.D., Duke University, 
Durham, N.C.
Cell signaling pathways in cell proliferation and oncoge-
nesis.

Thomas Deisboeck, M.D., Massachusetts General
Hospital, Boston, Mass.
Model and simulation of multicellular patterns in cancer.

Richard Hynes, Ph.D., Massachusetts Institute of
Technology, Boston, Mass.
Modeling cancer progression.

Vito Quaranta, M.D., Vanderbilt University Medical
Center, Nashville, Tenn.
Model and simulation of cancer invasion.

tain parameters—which Quaranta meas-
ures experimentally—such as speed 
of migration and the rate of cell 
division.  Moreover, as cells divide, they
acquire mutations that make them more
aggressive and invasive (better able to 
proliferate, migrate, and enter the sur-
rounding tissue). 

The resulting computer simulation—
which shows a slice of a growing tumor—
looks a bit like a weather forecasting
map, Quaranta says. Virtual cells divide,
move, and change colors to represent
their changing phenotypes—for example,
blue for highly aggressive, orange for less
aggressive, and brown for dead.
Depending on the conditions, tumors
will either grow with smooth margins
(remain non-invasive) or will finger 
out into the surrounding tissue 
(become invasive). 

When they ran their model, they
got a surprising result: “We found that
if the surrounding environment is a
smooth, easy environment, then the
cells tend to be non-invasive. But if
you put pressure on the cells, say by
reducing oxygen or making the land-
scape very hard to deal with, then the
tumors become invasive,” Quaranta
says. In gentle conditions, many differ-
ent tumor cell phenotypes co-exist, but
when the conditions become harsh
one or two super-aggressive pheno-
types prevail. 

Anti-angiogenisis drugs, inflamma-
tion, even chemotherapy and radiation
therapy might create conditions for
aggressive phenotypes to become domi-
nant, Quaranta says. 

Their findings were published in the
December 1 issue of Cell, a leading biol-
ogy journal. Anderson says that before
his collaboration with Quaranta he
would never have dreamed of submit-
ting a paper to Cell. 

“There was a bit of a wrestling match
over the exact wording. But that ulti-
mately paid off because it produced a
paper that was really aimed at their audi-
ence, and that they could understand,”
Anderson recalls.  

“Ultimately I’m hoping this is going
to be good for the math biology com-
munity, because if I can get a paper
published in Cell, then why can’t some-
body else?” he adds.
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Quaranta says the partnership has
changed his biology as well. “Our
experiments now are actually driven 
by mathematics. So we’re entering an
era of mathematics-driven experimen-
tal biology that is going to be interest-
ing to see.”

“It’s a nice change,” Anderson says.
“To have mathematics driving experi-
mentation, instead of us just always play-
ing catch up with the biology.” 

GLIOMAS: 
THE PATIENT LEVEL

Kristin Swanson (of the University of
Washington) also works on modeling
tumor invasion, but in glioma—a specific

Brain Tumor Revealed. Only 10 percent of glioma cells are visible on MRI (the bright white
area above); a computer simulation superimposed over the MRI helps doctors visualize the
rest. The yellow/pink/red areas show that glioma cells may have diffused way beyond the
borders of the mass seen on MRI.  Courtesy of Kristin Swanson

type of brain tumor that is particularly
invasive and deadly. By the time a
glioma mass is detectable on MRI, inva-
sive glioma cells have already wandered
far into the brain. Swanson compares it
to an iceberg: the mass you can see rep-
resents only about 10 percent of the
total tumor cells in the brain; the rest are
undetectable, making it impossible to
remove them. 

Swanson’s model consists of a series
of partial differential equations that
describe how the mass of glioma cells
spreads within a virtual brain—a three-
dimensional lattice complete with areas
of white and grey matter (glioma cells
migrate at different rates in these dif-

ferent tissues). Her computer simula-
tions show the changing density of
glioma cells along sections of the virtu-
al brain—for example, red where the
tumor density is high and blue where
density is low. 

A glioma patient’s MRI reveals only
the detectable part of the tumor, so
Swanson uses her simulations to visual-
ize the undetectable portion and predict
how the tumor will spread.  

“Just using diagnostic MRI and this
mathematical model, you can predict
survival with very reasonable accuracy
for an individual patient,” she says. 

Her model can also be used to run in sil-
ico clinical trials. “It’s hard to test therapies
for gliomas because patients don’t live long
and you can’t see what’s happening with
most of the tumor,” Swanson says. “But if
you have a model for the expected behavior
of an individual patient’s tumor, then you
can assess the success of therapy relative to
the expected behavior.”

Another investigator working on
gliomas is Thomas S. Deisboeck, MD,
who is assistant professor of radiology at
Massachusetts General Hospital and
Harvard Medical School, as well as prin-
cipal investigator of the Center for the
Development of a Virtual Tumor
(CViT), one of the nine ICBPs.
Deisboeck uses a discrete, cell-based
approach, rather than a continuous
approach, to predict how cells will
spread through a three-dimensional vir-
tual brain. This allows him to connect
what is happening at the subcellular to
the cellular and tissue levels. “Our main
interest is multi-scale, multi-grid, multi-
resolution modeling,” he says.

His virtual cells can proliferate,
migrate, die, and respond to the envi-
ronment and each other. They also con-
tain a nucleus, cytoplasm, membrane
and even working biochemical pathways.
The actions of particular biochemical
pathway components can influence the
behavior of the cells and the spread of
the tumor. For example, Deisboeck is
modeling how the EGFR (epidermal
growth factor receptor) pathway acts as
part of a molecular switch that turns
glioma cells from proliferative (dividing)
to migratory (invading local tissue). 

Though he eventually hopes to use
his models to improve patient treat-

“It’s a nice change,” Alex Anderson says. 
“To have mathematics driving

experimentation, instead of us just always
playing catch up with the biology.” 



“Maybe in one or two generations,
we’ll have experimental biologists who
are fluent in the language of mathemat-
ics,” agrees Vito Quaranta of Vanderbilt
University. 

THE CUTTING EDGE
Quaranta believes that a new era of

cancer biology is fast approaching. “The
way we do experimental oncology is
going to change dramatically as these
mathematics-driven simulations become
more and more common place,” he says.

As quantitative modeling moves from
the margins of cancer biology to the
mainstream, it is also presenting cutting-
edge challenges for modelers.

“It’s raising issues that mathemati-
cians and modelers have never had to
face before,” says Philip Maini of
Oxford University. For example, how
do you model the mechanics of a
growing tissue? How do you build
multi-scale models that are accurate
across different biological and time
scales? How simple or complex is the
optimal model? 

“It’s a very interesting time for grad-
uate students and post-docs to be
involved, because it’s an area that’s
now really beginning to take off,”
Maini says. “Yet it isn’t so far devel-
oped that you can’t immediately start
making inroads.” ■■
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ment, his first goal is more modest—to
improve diagnostics and patients’ quali-
ty of life. 

“What would be already a very signif-
icant achievement is if you could argue
that instead of taking three MRI images
say over six months, the combination of
in silico modeling with two images would
be just as informative,” he says.  

As principal investigator of CViT,
Deisboeck’s broader vision is to build an
online community of cancer modelers
and a toolkit for multi-scale in silico can-
cer research. CViT is creating new infra-
structure, including a digital model
repository that will allow people to share
and combine models (www.cvit.org).

BRIDGING THE DIVIDE
The above examples share a com-

mon theme—a tight link between the
lab or clinic and the computer. But
these examples are still the exception
rather than the rule. The major obsta-
cle in bringing modeling to cancer
biology remains the lack of communi-
cation between modelers and experi-
mentalists. 

On the one hand, biologists and cli-
nicians tend to be mathematically illiter-
ate and fearful of mathematics, says
Robert A. Gatenby, MD, professor of
radiology and applied mathematics at
the University of Arizona. 

On the other hand, mathemati-
cians tend to neglect the biology, he
says. “Mathematicians will set up
equations and then they’ll do unique-
ness theorems and things like that,
which are very mathematical
approaches but utterly meaningless
biologically. This just reinforces the
biologists’ opinion that this is mean-
ingless and can’t be even remotely
helpful to them.”

Getting these two groups to
speak a common language and
embrace a common objective is 
a major challenge. But efforts like
the Integrative Cancer Biology
Program are helping to bridge this
divide and to train a new generation
of scientists who are eager to cross
disciplines. 

“A lot of the students nowadays
don’t want to get locked into just
one field; they are looking for these
multi-connections between a lot of
disciplines. They may be engineer-
ing majors, but they want to know
something about biology,” says
Daniel Gallahan, PhD, Project
Director of the Integrative Cancer
Biology Program at the NIH.
“That’s been a pleasant surprise to
me and it’s something I see as a
critical component for the future
of this effort.” 

From Patients to Molecules and Back. MRI images from a brain tumor patient (left) are used to build a 3-D in silico model of the growing
tumor (right). Each cancer cell is represented as an autonomous agent that can move in space and change phenotypes (proliferation = blue;
migration = red; quiescence = green). Each cell’s behavior is determined by equations that represent the cell’s intracellular networks, cell-to-
cell interactions, and cell-microenvironment interactions. Images Courtesy of Thomas S. Deisboeck. The underlying multi-scale model was
described in Zhang et al. J. Theor Biol. 244(1): 96-107,2007.


